Package org.itk.simple
Class WienerDeconvolutionImageFilter
java.lang.Object
org.itk.simple.ProcessObject
org.itk.simple.ImageFilter
org.itk.simple.WienerDeconvolutionImageFilter
The Wiener deconvolution image filter is designed to restore an image
convolved with a blurring kernel while keeping noise enhancement to a
minimum.
The Wiener filter aims to minimize noise enhancement induced by
frequencies with low signal-to-noise ratio. The Wiener filter kernel
is defined in the frequency domain as $W(\\omega) = H^*(\\omega) / (|H(\\omega)|^2 + (1 /
SNR(\\omega)))$ where $H(\\omega)$ is the Fourier transform of the blurring kernel with which the
original image was convolved and the signal-to-noise ratio $SNR(\\omega)$ . $SNR(\\omega)$ is defined by $P_f(\\omega) / P_n(\\omega)$ where $P_f(\\omega)$ is the power spectral density of the uncorrupted signal and $P_n(\\omega)$ is the power spectral density of the noise. When applied to the input
blurred image, this filter produces an estimate $\\hat{f}(x)$ of the true underlying signal $f(x)$ that minimizes the expected error between $\\hat{f}(x)$ and $f(x)$ .
This filter requires two inputs, the image to be deconvolved and the
blurring kernel. These two inputs can be set using the methods
SetInput() and SetKernelImage(), respectively.
The power spectral densities of the signal and noise are typically
unavailable for a given problem. In particular, $P_f(\\omega)$ cannot be computed from $f(x)$ because this unknown signal is precisely the signal that this filter
aims to recover. Nevertheless, it is common for the noise to have a
power spectral density that is flat or decreasing significantly more
slowly than the power spectral density of a typical image as the
frequency $\\omega$ increases. Hence, $P_n(\\omega)$ can typically be approximated with a constant, and this filter makes
this assumption (see the NoiseVariance member variable). $P_f(\\omega)$ , on the other hand, will vary with input. This filter computes the
power spectral density of the input blurred image, subtracts the power
spectral density of the noise, and uses the result as the estimate of $P_f(\\omega)$ .
For further information on the Wiener deconvolution filter, please see
"Digital Signal Processing" by Kenneth R. Castleman, Prentice Hall,
1995
Gaetan Lehmann, Biologie du Developpement et de la Reproduction, INRA
de Jouy-en-Josas, France
Chris Mullins, The University of North Carolina at Chapel Hill
Cory Quammen, The University of North Carolina at Chapel Hill
See:
itk::simple::WienerDeconvolution for the procedural interface
itk::WienerDeconvolutionImageFilter for the Doxygen on the original ITK class.
C++ includes: sitkWienerDeconvolutionImageFilter.h
-
Nested Class Summary
Nested ClassesModifier and TypeClassDescriptionstatic final class
static final class
-
Field Summary
Fields inherited from class org.itk.simple.ProcessObject
swigCMemOwn
-
Constructor Summary
ConstructorsModifierConstructorDescriptionitk::simple::WienerDeconvolutionImageFilter::WienerDeconvolutionImageFilter() Default Constructor that takes no arguments and initializes default parametersprotected
WienerDeconvolutionImageFilter
(long cPtr, boolean cMemoryOwn) -
Method Summary
Modifier and TypeMethodDescriptionvoid
delete()
virtual itk::simple::WienerDeconvolutionImageFilter::~WienerDeconvolutionImageFilter() DestructorImage itk::simple::WienerDeconvolutionImageFilter::Execute(const Image &image1, const Image &image2) Execute the filter on the input imagesprotected void
finalize()
BoundaryConditionType itk::simple::WienerDeconvolutionImageFilter::GetBoundaryCondition() constprotected static long
getName()
std::string itk::simple::WienerDeconvolutionImageFilter::GetName() const Name of this classdouble
double itk::simple::WienerDeconvolutionImageFilter::GetNoiseVariance() const Set/get the variance of the zero-mean Gaussian white noise assumed to be added to the input.boolean
bool itk::simple::WienerDeconvolutionImageFilter::GetNormalize() constOutputRegionModeType itk::simple::WienerDeconvolutionImageFilter::GetOutputRegionMode() constvoid
Self& itk::simple::WienerDeconvolutionImageFilter::NormalizeOff()void
Self& itk::simple::WienerDeconvolutionImageFilter::NormalizeOn() Set the value of Normalize to true or false respectfully.void
setBoundaryCondition
(WienerDeconvolutionImageFilter.BoundaryConditionType BoundaryCondition) Self& itk::simple::WienerDeconvolutionImageFilter::SetBoundaryCondition(BoundaryConditionType BoundaryCondition)void
setNoiseVariance
(double NoiseVariance) Self& itk::simple::WienerDeconvolutionImageFilter::SetNoiseVariance(double NoiseVariance) Set/get the variance of the zero-mean Gaussian white noise assumed to be added to the input.void
setNormalize
(boolean Normalize) Self& itk::simple::WienerDeconvolutionImageFilter::SetNormalize(bool Normalize) Normalize the output image by the sum of the kernel componentsvoid
setOutputRegionMode
(WienerDeconvolutionImageFilter.OutputRegionModeType OutputRegionMode) Self& itk::simple::WienerDeconvolutionImageFilter::SetOutputRegionMode(OutputRegionModeType OutputRegionMode)protected static long
toString()
std::string itk::simple::WienerDeconvolutionImageFilter::ToString() const Print ourselves outMethods inherited from class org.itk.simple.ImageFilter
getCPtr, swigRelease
Methods inherited from class org.itk.simple.ProcessObject
abort, addCommand, debugOff, debugOn, getCPtr, getDebug, getGlobalDefaultCoordinateTolerance, getGlobalDefaultDebug, getGlobalDefaultDirectionTolerance, getGlobalDefaultNumberOfThreads, getGlobalDefaultThreader, getGlobalWarningDisplay, getNumberOfThreads, getNumberOfWorkUnits, getProgress, globalDefaultDebugOff, globalDefaultDebugOn, globalWarningDisplayOff, globalWarningDisplayOn, hasCommand, removeAllCommands, setDebug, setGlobalDefaultCoordinateTolerance, setGlobalDefaultDebug, setGlobalDefaultDirectionTolerance, setGlobalDefaultNumberOfThreads, setGlobalDefaultThreader, setGlobalWarningDisplay, setNumberOfThreads, setNumberOfWorkUnits, swigRelease
-
Constructor Details
-
WienerDeconvolutionImageFilter
protected WienerDeconvolutionImageFilter(long cPtr, boolean cMemoryOwn) -
WienerDeconvolutionImageFilter
public WienerDeconvolutionImageFilter()itk::simple::WienerDeconvolutionImageFilter::WienerDeconvolutionImageFilter() Default Constructor that takes no arguments and initializes default parameters
-
-
Method Details
-
getCPtr
-
swigRelease
-
finalize
protected void finalize()- Overrides:
finalize
in classImageFilter
-
delete
public void delete()virtual itk::simple::WienerDeconvolutionImageFilter::~WienerDeconvolutionImageFilter() Destructor- Overrides:
delete
in classImageFilter
-
setNoiseVariance
public void setNoiseVariance(double NoiseVariance) Self& itk::simple::WienerDeconvolutionImageFilter::SetNoiseVariance(double NoiseVariance) Set/get the variance of the zero-mean Gaussian white noise assumed to be added to the input. -
getNoiseVariance
public double getNoiseVariance()double itk::simple::WienerDeconvolutionImageFilter::GetNoiseVariance() const Set/get the variance of the zero-mean Gaussian white noise assumed to be added to the input. -
setNormalize
public void setNormalize(boolean Normalize) Self& itk::simple::WienerDeconvolutionImageFilter::SetNormalize(bool Normalize) Normalize the output image by the sum of the kernel components -
normalizeOn
public void normalizeOn()Self& itk::simple::WienerDeconvolutionImageFilter::NormalizeOn() Set the value of Normalize to true or false respectfully. -
normalizeOff
public void normalizeOff()Self& itk::simple::WienerDeconvolutionImageFilter::NormalizeOff() -
getNormalize
public boolean getNormalize()bool itk::simple::WienerDeconvolutionImageFilter::GetNormalize() const -
setBoundaryCondition
public void setBoundaryCondition(WienerDeconvolutionImageFilter.BoundaryConditionType BoundaryCondition) Self& itk::simple::WienerDeconvolutionImageFilter::SetBoundaryCondition(BoundaryConditionType BoundaryCondition) -
getBoundaryCondition
BoundaryConditionType itk::simple::WienerDeconvolutionImageFilter::GetBoundaryCondition() const -
setOutputRegionMode
public void setOutputRegionMode(WienerDeconvolutionImageFilter.OutputRegionModeType OutputRegionMode) Self& itk::simple::WienerDeconvolutionImageFilter::SetOutputRegionMode(OutputRegionModeType OutputRegionMode) -
getOutputRegionMode
OutputRegionModeType itk::simple::WienerDeconvolutionImageFilter::GetOutputRegionMode() const -
getName
std::string itk::simple::WienerDeconvolutionImageFilter::GetName() const Name of this class- Overrides:
getName
in classProcessObject
-
toString
std::string itk::simple::WienerDeconvolutionImageFilter::ToString() const Print ourselves out- Overrides:
toString
in classProcessObject
-
execute
Image itk::simple::WienerDeconvolutionImageFilter::Execute(const Image &image1, const Image &image2) Execute the filter on the input images
-