Development and optimization of a coupled multi-GPU LBM-MHFEM solver for vapor transport in the boundary layer over a moist soil

Jakub Klinkovský^a, Andrew C. Trautz^b, Radek Fučík^a, Tissa H. Illangasekare^c

^a Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague ^bResearch Civil Engineer – Geotechnical Engineering and Geosciences Branch, US Army Engineer Research and Development Center ^cCenter for Experimental Study of Subsurface Environmental Processes (CESEP), Department of Civil and Architectural Engineering, Colorado School of Mines

> 2023 SIAM Conference on Computational Science and Engineering February 28, 2023

Ack

1 Motivation

- ② Governing equations
- **3** Coupling LBM and MHFEM
- **4** Overview of implementation and optimizations
- **5** Evaluation of parallel performance

Environmental effects of land-atmospheric interactions

Joint work by Andrew C. Trautz^b and Tissa H. Illangasekare^c

 b US Army Engineer Research and Development Center c Center for Experimental Study of Subsurface Environmental Processes, Colorado School of Mines

Experiments related to this talk:

- Climate-controlled, low-speed wind tunnel interfaced with a soil tank (CESEP, Colorado School of Mines, USA)
- Designed to study processes with mass flux across the land-atmospheric interface (e.g. water evaporation)
- Live vegetation approximated with limestone blocks

LBM-MHFEM

Ack

Computational domain

Only part of the wind tunnel above soil surface; 2 identical blocks; different spacings.

Governing equations: air flow and vapor transport

NSE (air flow in
$$\Omega_1 \times (0, t_{\max})$$
):

$$abla \cdot \vec{v} = 0,$$
 (1a)

$$\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \nabla \vec{v} = -\frac{1}{\rho} \nabla p + \nu \Delta \vec{v}, \quad \text{(1b)}$$

ADE (vapor transport in $\Omega_2 \subset \Omega_1$):

$$\frac{\partial \phi}{\partial t} + \nabla \cdot (\phi \vec{v} - D\nabla \phi) = 0, \qquad (2a)$$

Or in non-conservative form:

$$\frac{\partial \phi}{\partial t} + \vec{v} \cdot \nabla \phi - \nabla \cdot (D\nabla \phi) = 0.$$
 (2b)

$ec{v}$ fluid velocity,

ho fluid density,

p fluid pressure,

 ν ~ kinematic viscosity of the fluid,

\vec{v} fluid velocity,

- ϕ relative humidity,
- D diffusion coefficient.

(LBM-MHFEM)

Coupled LBM-MHFEM approach

- Equation (1) lattice Boltzmann method (LBM)
 - D3Q27, Cumulant collision operator (M. Geier et al., 2015)
 - A-A pattern for streaming
 - in-house code implementation (R. Straka, R. Fučík, P. Eichler, J. Klinkovský et al.)
 - implementation details later in this talk
- Equation (2) mixed-hybrid finite element method (MHFEM)
 - NumDwarf: numerical scheme for a system of PDEs in a general-coefficient form
 - details in R. Fučík, J. Klinkovský, J. Solovský, T. Oberhuber, J. Mikyška, Computer Physics Communications 238 (2019)
- One-way coupling via the velocity field $ec{v}$
 - Interpolation from the equidistant lattice to the MHFEM mesh

LBM-MHFEM: coupling details

Interpolation of the velocity \vec{v} :

- Trilinear or tricubic interpolation
- Evaluation at cell side centers (not cell centers) to satisfy balancing requirements imposed by the MHFEM discretization

Transport equation:

- $\nabla \cdot \vec{v} = 0$ is not satisfied exactly by the LBM solver (weak compressibility)
- The interpolated velocity field is not locally conservative
- Numerical schemes for the conservative and non-conservative variants are not equivalent
- MHFEM discretization of the **non-conservative transport equation** includes a term that compensates for non-zero discrete velocity divergence

Time stepping:

- MHFEM allows to use larger time steps than LBM
- Adaptive time-stepping strategy for MHFEM based on a CFL-like condition

Performance

Example: simulation of velocity and relative humidity

Implementation overview

Main features:

- All parts of the algorithm are computed on a GPU accelerator
- Multi-GPU implementation based on MPI

Custom code in C++ developed using:

- Template Numerical Library: https://tnl-project.org/
 More details: MS178, talk by Tomáš Oberhuber (Wed. March 1, 3:10-3:25 PM, room D507)
- CUDA: https://docs.nvidia.com/cuda/
- Message Passing Interface: https://www.mpi-forum.org/

Domain decomposition for LBM

- Computational domain = several independent subdomains + communication
- Computation: subdomains are processed on different GPUs
- Each MPI rank (process) manages its own GPU and subdomain
- Communication: 9 of 27 distribution functions need to be copied between adjacent subdomains
- For simplicity: only 1D decomposition (our current implementation) not scalable

Basic LBM algorithm

- 1 Initialization (read input data, set initial condition, etc.)
- **2** While the final time is not reached, do for all lattice sites in parallel:
 - 1 Streaming step before collision (pull distribution functions from global memory)
 - **2** Compute macroscopic quantities (ρ , \vec{v} , etc.)
 - **3** Handle boundary conditions (boundary sites only)
 - 4 Collision
 - **5** Streaming step after collision (push distribution functions to global memory)
 - 6 Output macroscopic quantities to global memory

Note: steps 1 to 6 inside the loop are called **LBM iteration**. **Note:** streaming steps before/after collision depend on the streaming pattern.

LBM algorithm with domain decomposition

- 1 Initialization (read input data, set initial condition, etc.)
- 2 Copy distribution functions on the boundaries between subdomains
- **3** While the final time is not reached:
 - 1 Perform the LBM iteration for all lattice sites on all subdomains
 - 2 Copy distribution functions on the boundaries between subdomains

LBM with overlapped computation and communication

- 1 Initialization (read input data, set initial condition, etc.)
- 2 Copy distribution functions on the boundaries between subdomains
- **3** While the final time is not reached:
 - **(1)** On all subdomains, start LBM iteration for lattice sites adjacent to subdomain boundary
 - 2 On all subdomains, start LBM iteration for remaining lattice sites
 - **3** On all subdomains, wait until boundary lattice sites are processed
 - 4 On all subdomains, copy distribution functions on the boundaries between subdomains
 - **5** On all subdomains, wait until the remaining lattice sites are processed

Implemented optimizations

- Domain decomposition with overlapped computation and communication (DistributedNDArraySynchronizer class from TNL, implementation based on CUDA streams)
- Pipelining for asynchronous communication of relevant distribution functions (9 in each direction)
- Avoiding buffers in communication (specific ordering of data in multidimensional arrays is necessary)
- Direct GPU-GPU copies via "CUDA-aware" MPI
- Streaming with the A-A pattern reduced memory requirements
- Balancing decomposition of the lattice and mesh

Balancing decomposition of the lattice and mesh

Uniform lattice decomposition: 1/8 of nodes in each subdomain

Balancing decomposition of the lattice and mesh

Uniform lattice decomposition: 1/8 of nodes in each subdomain

Unstructured mesh decomposition: non-uniform counts of mesh cells 12% 14% 14% 14% 24% 19% 3% 0%

Ack

Balancing decomposition of the lattice and mesh

Balanced lattice and mesh decomposition:

Approx. 1/8 of mesh cells and approx. 1/8 of lattice nodes per MPI rank.

Balancing decomposition of the lattice and mesh

Balanced lattice and mesh decomposition:

Approx. 1/8 of mesh cells and approx. 1/8 of lattice nodes per MPI rank.

Balancing decomposition of the lattice and mesh

Balanced lattice and mesh decomposition:

Approx. 1/8 of mesh cells and approx. 1/8 of lattice nodes per MPI rank.

Karolina supercomputer – hardware specifications

Accelerated compute nodes in the Karolina supercomputer:

Number of nodes	72
Processors per node	2
CPU model	AMD EPYC 7763 (64 cores, 2.45-3.5 GHz)
Memory per node	1024 GB DDR4 3200 MT/s
Accelerators per node	8
GPU model	Nvidia A100 (40 GB HBM2 memory)
Intra-node connection	NVLink 3.0 (12 sub-links, 25 GB/s per sub-link per direction)
Inter-node connection	$4 \times$ 200 Gb/s InfiniBand ports

The supercomputer is operated by IT4Innovations (https://www.it4i.cz/).

Performance

LBM: strong scaling on the Karolina supercomputer

Note: only LBM solver (i.e., no coupling with MHFEM)

		single precision			double precision		
$N_{\rm nodes}$	N_{ranks}	GLUPS	Sp	Eff	GLUPS	Sp	Eff
1	1	5.2	1.0	1.00	2.8	1.0	1.00
1	2	10.2	2.0	0.98	5.5	2.0	1.00
1	4	20.4	3.9	0.98	11.1	4.0	1.01
1	8	41.1	7.9	0.99	22.3	8.1	1.01
2	16	80.4	15.5	0.97	44.1	16.0	1.00
4	32	145.2	28.0	0.87	85.5	31.0	0.97
8	64	258.6	49.8	0.78	153.7	55.7	0.87
16	128	301.1	58.0	0.45	225.1	81.6	0.64

- Lattice size: $512 \times 512 \times 512$
- Each MPI rank uses its own GPU
- GLUPS billions of lattice updates per second
- Sp speed-up relative to 1 GPU
- $Eff = Sp/N_{ranks}$ parallel efficiency

Note: efficiency limited by 1D domain decomposition (not a problem for weak scaling)

Coupled LBM-MHFEM solver performance

- Decomposition algorithm amount of work optimized at the cost of increased communication
- Only 1D decomposition is currently implemented not scalable
- Tested with up to 16 GPUs (Nvidia A-100) on 2 nodes (RCI cluster on FEE CTU):
 - $16 \times 40 \text{ GiB} = 640 \text{ GiB}$ memory on the GPUs
 - Up to $3115\times800\times905\approx2.25\times10^9$ lattice nodes + approx. 48×10^6 mesh cells
- Not tested on more GPUs (nodes) due to cluster limitations
- Strong scaling in low resolution (approx. 64×10^6 lattice sites and 12×10^6 mesh cells):

N_{ranks}	Time [min]	GLUPS	Eff
1	392	1.0	1.00
2	202	1.9	0.96
4	110	3.7	0.92
8	62	6.4	0.80

Conclusion

- Validated model for vapor transport in air based on LBM and MHFEM
- Fully multi-GPU solver with good scalability
 - The coupled LBM-MHFEM solver needs to be tested on larger supercomputer
 - Future work: optimizations for scalability on more GPUs (e.g. multidimensional decomposition)
- Multidisciplinary work collaboration between experimental, numerical and computational methodologies
- Future work: extensions of the model (thermodynamics, coupling with porous media, etc.)

Thank you for your attention!

Acknowledgements:

- Czech Science Foundation (project 21-09093S)
- Ministry of Education, Youth, and Sports of the Czech Republic (Inter-Excellence grant LTAUSA19021, OP RDE grant CZ.02.1.01/0.0/0.0/16_019/0000765)
- Grant Agency of the Czech Technical University in Prague (project SGS20/184/OHK4/3T/14)
- e-INFRA CZ project ID:90140 of Ministry of Education, Youth and Sports of the Czech Republic

Related papers:

- J. Klinkovský, A. C. Trautz, R. Fučík, T. H. Illangasekare: Lattice Boltzmann Method–Based Efficient GPU Simulator for Vapor Transport in the Boundary Layer Over a Moist Soil: Development and Experimental Validation, Computers & Mathematics with Applications, accepted Feb 22, 2023
- R. Fučík, J. Klinkovský, J. Solovský, T. Oberhuber, J. Mikyška: Multidimensional mixed-hybrid finite element method for compositional two-phase flow in heterogeneous porous media and its parallel implementation on GPU, Computer Physics Communications, 2019