
Overview of parallel and asynchronous
computing in Python

Jakub Klinkovský

Czech Technical University in Prague
Faculty of Nuclear Sciences and Physical Engineering

Department of Software Engineering + Department of Mathematics

Workshop on Scientific Computing 2023
May 26 2023

Introduction to Python
Python is general, high-level, dynamic, interpreted
programming language.

There are several implementations (interpreters), e.g.
CPython, PyPy, IronPython, Jython, etc.

The reference implementation, CPython, is considered
for this talk.

https://www.python.org/
https://en.wikipedia.org/wiki/CPython
https://en.wikipedia.org/wiki/PyPy
https://en.wikipedia.org/wiki/IronPython
https://en.wikipedia.org/wiki/Jython

Most popular programming languages

Python modules for
scientific computing

Data processing:
NumPy, SciPy, Pandas

Visualization:
Matplotlib, Seaborn, Bokeh,
Plotly, Mayavi

Machine learning and neural
networks: Keras, SciKit-Learn,
PyTorch, TensorFlow

and many more...

Python modules for improving performance
As Python is an interpreted language, its performance is not great. Typical code
optimization approaches are:

static and just-in-time compilers: NumExpr, Numba, Cython

reimplementing performance-critical parts in C/C++ and binding to Python
(pybind11, Boost.Python)

Even with optimized code, some work loads may benefit from parallelism:

via processes or via threads

in high-level Python code or in low-level code (modules used in Python)

https://numexpr.readthedocs.io/en/latest/index.html
https://numba.pydata.org/
https://cython.org/

Multi-processing and multi-threading modules

1. Multi-processing:

separate instances of the Python interpreter that communicate with each other

modules such as multiprocessing , mpi4py , loky

2. Multi-threading:

common pitfall: the CPython interpreter has a Global Interpreter Lock (GIL)

low-level code can explicitly release the GIL when the code execution does
not involve the Python interpreter

even using the threading module in Python may be beneficial (e.g. waiting
for I/O can be hidden, but Python code execution is serialized)

Asynchronous computing in Python
High-level API for asynchronous IO has been developed between Python 3.4 and 3.7:

two new Python keywords: async and await (definition of coroutines)

standard module asyncio (API for running and managing coroutines)

Hello World example:

import asyncio

async def main():
 print('Hello ...')
 await asyncio.sleep(1)
 print('... World!')

asyncio.run(main())

Running coroutines
1. asyncio.run() – top-level entry point for running an async function from the

synchronous context

2. awaiting on coroutines – using the keyword await in an async function
in general, there are 3 types of awaitable objects:

coroutines – Python function marked with async

Tasks – wrapper object used to schedule coroutines to run concurrently

Futures – special low-level objects that represent an eventual result that
will arrive in the future

awaiting allows to express concurrency in the high-level language

Example

import asyncio
import time

async def say_after(delay, what):
 await asyncio.sleep(delay)
 print(what)

async def main():
 print(f"started at {time.strftime('%X')}")
 await say_after(1, 'hello')
 await say_after(2, 'world')
 print(f"finished at {time.strftime('%X')}")

asyncio.run(main())

Expected output:

started at 17:13:52
hello
world
finished at 17:13:55

Running coroutines
3. asyncio.create_task() – run coroutines concurrently as tasks

Example

async def main():
 task1 = asyncio.create_task(say_after(1, 'hello'))
 task2 = asyncio.create_task(say_after(2, 'world'))

 print(f"started at {time.strftime('%X')}")
 await task1
 await task2
 print(f"finished at {time.strftime('%X')}")

Now the code runs 1 second faster (tasks are overlapped at asyncio.sleep(delay)

in the say_after() function).

Running coroutines
4. asyncio.TaskGroup class – a modern alternative to asyncio.create_task()

(since Python 3.11)

Example

async def main():
 async with asyncio.TaskGroup() as tg:
 task1 = tg.create_task(say_after(1, 'hello'))
 task2 = tg.create_task(say_after(2, 'world'))

 print(f"started at {time.strftime('%X')}")

 # The await is implicit when the context manager exits.

 print(f"finished at {time.strftime('%X')}")

Synchronization between tasks
The asyncio API provides synchronization primitives similar to threading module:

asyncio.Lock

asyncio.Event

asyncio.Condition

asyncio.Semaphore

asyncio.BoundedSemaphore

asyncio.Barrier

Event loop
asyncio.run() runs a low-level event loop where all async tasks are scheduled

coroutines themselves are useless until they are bound to an event loop

the default event loop in CPython uses a single thread

event loops are pluggable – the built-in event loop can be substituted with another
e.g. uvloop is a fast implementation in Cython (its performance is comparable
to Go and other statically compiled languages)

theoretically, a multi-threaded event loop could be developed (but there is still
a problem with the Global Interpreter Lock)

https://uvloop.readthedocs.io/

Applications
The asynchronous API is useful mainly for hiding latency when waiting for data (IO).

HTTP requests – client and server packages (httpx , starlette)

databases – sqlalchemy , ...

web frameworks – Django, FastAPI, ...

My application demo

small script to help fighting linkrot on the web

HTTP client using the httpx package

the goal is to check if given URLs are working (HTTP status 200) or not
(HTTP status ≥ 400, DNS error, SSL error, connection timeout, ...)

Results
Dataset:

46946 URLs for 9084 domains

links extracted from the Arch Linux wiki

HTTP client parameters:

connection timeout 60s

failed connections are retried 3 times

Synchronous vs asynchronous comparison:

synchronous version: total time ≥ 751m (the script stopped due to an error...)

asynchronous version (using locks per every domain): total time 86m 18.613s

Thank you for your attention!

	Overview of parallel and asynchronous computing in Python
	Jakub Klinkovský
	Workshop on Scientific Computing 2023 May 26 2023

	Introduction to Python
	Most popular programming languages
	Python modules for scientific computing
	Python modules for improving performance
	Multi-processing and multi-threading modules
	Asynchronous computing in Python
	Running coroutines
	Example

	Running coroutines
	Example

	Running coroutines
	Example

	Synchronization between tasks
	Event loop
	Applications
	My application demo

	Results
	Thank you for your attention!

