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Abstrakt

Práce uvádí výsledky multidisciplinárního výzkumu, které kombinují znalosti z oblastí matematického
modelování, vědeckých výpočtů a experimentální fyziky.

První část práce obsahuje přehled technik pro programování moderních paralelních výpočetních
systémů a představuje dvě efektivní a konfigurovatelné datové struktury pro reprezentaci dat pomocí
vícerozměrných polí, respektive konformních nestrukturovaných sítí. Obě datové struktury jsou
implementovány v knihovně TNL a mají přímou podporu pro výpočty na grafických akcelerátorech
a také pro distribuované výpočty s MPI.

Druhá část práce se věnuje numerickým metodám ve výpočetní dynamice tekutin a jejim ap-
likacím. Nejprve je popsán obecný řešič založený na hybridní metodě smíšených konečných prvků
(MHFEM), který je dále verifikován pomocí testovací úlohy se známým analytickým řešením. Následně
je popsána mřížková Boltzmannova metoda (LBM) pro simulaci proudění tekutin. Práce vychází
z výpočetního kódu vyvíjeného na Katedře matematiky, FJFI ČVUT v Praze, který je zde použit s
důrazem na škálovatelnou implementaci pro superpočítače využívající grafické akcelerátory. Následně
je představena výpočetní metoda využívající kombinaci metod LBM a MHFEM. Vlastnosti spojeného
numerického schématu jsou zkoumány na jednoduchém modelu obsahujícím Navierovy–Stokesovy
rovnice a lineární advekčně–difúzní rovnici. Nakonec je odvozen matematický model šíření vodní
páry v turbulentní mezní vrstvě vzduchu nad nerovným povrchem. Numerické výsledky dosažené
pomocí popsaného přístupu založeného na kombinaci LBM a MHFEM jsou validovány pomocí kvali-
tativního i kvantitativního srovnání s experimentálními daty naměřenými ve větrném tunelu ve třech
konfiguracích s různými režimy proudění. Obsažené výsledky mohou sloužit jako první krok pro vývoj
efektivního a flexibilního řešiče pro pokročilé aplikace.

Abstract

The thesis presents a multidisciplinary work that combines knowledge from the fields of mathematical
modeling, computational science and experimental physics.

The first part of the thesis provides a review of programming techniques for modern parallel
architectures and presents two efficient and configurable data structures for the representation of
multidimensional arrays and conforming unstructured meshes, respectively. Both data structures
are implemented in the Template Numerical Library (TNL) and natively support GPU-accelerated
computing as well as distributed computing with MPI.

The second part deals with numerical methods in computational fluid dynamics and their applica-
tions. First, a general solver based on the mixed-hybrid finite element method (MHFEM) is developed
and verified using a benchmark problem with a known analytical solution. Next, the lattice Boltzmann
method (LBM) for the simulation of fluid flow is described. This work builds on the code developed at
the Department of Mathematics, FNSPE CTU in Prague, and focuses on the scalable implementation
for GPU-accelerated supercomputers. Then, a novel coupled computational approach based on the
combination of LBM and MHFEM is presented. The properties of the coupled numerical scheme
are investigated using a model problem based on the Navier–Stokes equations coupled with a linear
advection–diffusion equation. Finally, a mathematical model for water vapor transport in turbulent air
flow above a disturbed soil surface is developed and solved numerically using the coupled LBM-MHFEM
solver. The results are validated by qualitative as well as quantitative comparison to experimental
data measured in a climate-controlled wind tunnel in three configurations with different flow regimes.
The presented work can serve as the first step towards the development of an efficient and flexible
multiphysics solver.
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Introduction

Mathematical modeling of fluid dynamics has many ecological, medical and industrial applications
and it is one of the central research topics investigated at the Department of Mathematics, FNSPE
CTU in Prague in collaboration with prominent domestic as well as foreign institutions. In order to
accurately model complex natural processes governing the behavior of fluids, it is often necessary to
employ advanced numerical methods capable of treating multiscale and multiphysics cases. Multiscale
modeling refers to techniques that resolve fundamental physical processes at many different temporal
and/or spatial scales. On the other hand, multiphysics models comprise several parts describing specific
aspects of a large system, such as thermal distribution in a flowing fluid. Both factors bring additional
challenges to the development of mathematical models as well as numerical methods that can be
applied.

Accurate numerical simulations in high resolution are possible only on large computational clusters
or supercomputers. However, using the facilities for high-performance computing efficiently is non-
trivial, as it requires careful management of data in the computer memory and appropriate division
of the computations between all available processing units. Especially when designing algorithms for
systems with GPU accelerators, which provide significantly more processing units as well as memory
levels compared to traditional computational systems, specifics of the hardware architectures have to
be considered in the software design. Due to the diversity of parallel computing platforms, it is desirable
for scientists to use established high-level libraries that provide a portable and easy to use interface for
common operations. However, it may be difficult to combine different packages and libraries, or even
to gain sufficient overview of the available options.

Since the field of computational fluid dynamics includes many substantially different applications,
the most important requirements imposed on the building blocks of numerical solvers are configura-
bility and composability. The former allows to adapt a piece of software, such as a data structure, for a
specific application. The latter allows to combine multiple existing pieces together to resolve a new use
case. With these two design aspects, low-level components can be used to develop tools and solvers,
which are also configurable and composable on a higher level. On the highest level, a multiphysics
solver typically comprises a hierarchy of components that are coupled together and configured for the
needs of a specific problem.

This thesis pursues topics from two levels of interest. At one level, it deals with the development
of fundamental building blocks, such as efficient and reusable data structures and parallel algorithms.
Specifically, the data structures described in this thesis allow to organize structured as well as unstruc-
tured data in numerical simulations according to the requirements for efficient utilization of modern
supercomputers. At the other level, these building blocks are used as fundamental ingredients for the
development of advanced numerical solvers in computational fluid dynamics. The solvers described in
this thesis are based on two main numerical methods, namely the mixed-hybrid finite element method
and the lattice Boltzmann method. Both methods are thoroughly tested separately from each other and
then a coupled computational approach based on both methods is introduced. Finally, the resulting
coupled solver is applied in practice for the simulation of water vapor transport in turbulent air flow.
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State of the art

Contemporary supercomputers are based on several different hardware platforms and each has an
associated parallel programming framework providing native performance. For example, CUDA [M19]
targets NVIDIA GPU accelerators, ROCm [M2] targets AMD GPU accelerators, and TBB [O13] targets
multi-core processors. In order to simplify parallel programming and provide performance portability,
high-level libraries such as Thrust [O26], Kokkos [A170], or TNL [A142] are being developed. Addi-
tionally, established scientific libraries such as Trilinos [O37] or PETSc [O2] are being updated in order
to support GPU accelerators via suitable interfaces. However, this often requires a complete redesign
of an algorithm due to hardware platforms having different requirements on optimal data layout.

Practically all numerical solvers in computational fluid dynamics utilize methods of linear algebra,
which provides a well-established framework for representing scientific problems. Many data struc-
tures and algorithms for GPU accelerators are available in common libraries such as cuBLAS [M19]
or cuSPARSE [M19]. An important problem in linear algebra is the solution of sparse linear systems,
which is covered later in this thesis in Chapter 3.

Unlike linear algebra, other fields such as stencil computations on grids are not as established and
may not even have a fixed universal system of notation. Hence, there is no obvious way to formulate
problems and the development of reusable software components is inherently difficult. Overall, there is
a lack of software libraries providing robust and multi-platform data structures for the representation
of unstructured meshes. Moreover, multiple types of meshes are used in practice, e.g., tetrahedral,
hexahedral, and polyhedral. While tetrahedral meshes are the easiest to use in numerical methods
such as finite elements, hexahedral and especially polyhedral meshes are advantageous in complex
cases with high amount of data per cell. Compared to other types, polyhedral meshes need smaller
number of cells to cover a given domain and numerical methods such as finite volumes can be designed
carefully with the same level of accuracy that can be achieved on tetrahedral meshes [A178].

Numerous computational tools based on numerical methods such as finite volumes or finite ele-
ments are available for solving partial differential equations originating from mathematical modeling
of various biological, environmental, or industrial problems. In particular, software projects such as
deal.II [A17], DUNE [C10], OpenFOAM [C26], TOUGH2 [M24], MFiX [M27], ANSYS Fluent [M3] or
COMSOL Multiphysics [M8] are suitable for simulations in the field of computational fluid dynam-
ics. All the aforementioned projects provide some parallel computing capabilities. While efficient
implementations of the finite volume and finite element methods for GPU accelerators are available
[A20, A42–A44, A67, A189], the aforementioned projects provide only limited or no support for GPU-
accelerated computations. Additionally, the lattice Boltzmann method (LBM) has become popular
for turbulent flow simulations [A84, A106, A118, A147, A181, A188]. Unlike traditional numerical
approaches such as finite volume or finite element methods, the parallelization of the LBM algorithm
is simpler and most computational software that employs LBM also supports computations on GPU
accelerators.

While many of the aforementioned projects are open-source and thus can be freely modified, it
is difficult to incorporate novel approaches and methods into extensive software packages, especially
for external users. Hence, significant stream of innovation originates from small separate projects that
gradually either evolve into larger projects, or get incorporated into existing software. Many such
research projects were started separately at the Department of Mathematics, FNSPE CTU in Prague,
including an in-house code implementing the lattice Boltzmannmethod, and the author’s previouswork
[B20], an implementation of themixed-hybrid finite element method for multiphase compositional flow
in porous media. The work described in this thesis integrates, extends and generalizes several such
components.
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Research goals

Based on the previous section, the following goals were identified for our research. To the best of our
knowledge, they represent unique ideas that push forward the frontiers of the state of the art.

1. To develop the Template Numerical Library (TNL) [A142], an open-source software library of
high-performance algorithms and efficient data structures that follows modern software design
patterns and simplifies the development of CFD solvers.

Why develop yet another numerical library? The short answer is: Why not? There are many
competing libraries with similar features even in established fields such as linear algebra, where
one might hope for the existence of a universal project collecting contributions from all over the
world. However, competition inspires innovation and maintaining a separate project provides its
developers with an easy way to try and share ideas with others.

Note that this goal is never-ending, it lies in continuous effort rather than reaching a milestone.

2. To develop an efficient data structure for the representation of conforming unstructured meshes
with full support of modern distributed computing platforms based on GPU accelerators.

3. To extend the author’s previously developed solver based on the mixed-hybrid finite element
method with distributed computing capabilities.

4. To develop a scalable solver based on the lattice Boltzmann method for GPU-based supercom-
puters.

5. To develop a mathematical model of vapor transport by air flow above a soil surface, implement
a high-performance solver for the model, and validate it using experimentally measured data.

Achieved results

The thesis presents the following novel results:

1. Data structure for conforming unstructured meshes supporting distributed computing
on GPU accelerators. The data structure is implemented in the TNL library [A142] and several
benchmarks were performed to evaluate its efficiency, showing that for triangular and tetrahedral
meshes it outperforms the MOAB library [M28] by at least an order of magnitude. We have
published our results in [A110]. Since the publication of the paper, the data structure has been
extended for polygonal and polyhedral meshes and these modifications are included in the thesis.

2. General solver based on the mixed-hybrid finite element method (MHFEM) with dis-
tributed computing capabilities. This extends the author’s previous work [B20] and serves as
an important building block for other results in this thesis. The solver uses the aforementioned
distributed data structure for unstructured meshes and can utilize the Hypre library [C20] for
efficient solution of sparse linear systems via wrappers implemented in the TNL library. Our
results related to the development of the MHFEM solver are included in the publications [A72,
A110].

3. Scalable implementation of the lattice Boltzmann method (LBM) for supercomputers
based on GPU accelerators. The implementation is based on a distributed multidimensional
array data structure and an MPI synchronizer for distributed data, which are implemented in
the TNL library. Strong scaling as well as weak scaling studies were performed on the Karolina
supercomputer [O15]. The lattice Boltzmann method code is developed by the research group
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at the Department of Mathematics, FNSPE CTU in Prague and the author’s contributions are
included in the publications [A23, A68–A70].

4. Coupled computational approach based on the combination of lattice Boltzmann
method and mixed-hybrid finite element method. We consider a model based on the
Navier–Stokes equations (solved by LBM) coupled with a linear advection–diffusion equation
(discretized using MHFEM) and analyze properties of the numerical scheme and performance
of its implementation. A simple benchmark problem with analytical solution is constructed in
order to investigate accuracy of the scheme for conservative and non-conservative form of the
transport equation. The solver benefits from native implementation of both LBM and MHFEM
for GPU accelerators, which allows for efficient coupling between the methods. Our results are
included in the publication [A111].

5. Mathematical model for vapor transport in air flow and its validation using experi-
mental data. The aforementioned coupled computational approach has been used to model
transport of water vapor in the turbulent boundary layer above a disturbed soil surface. While the
porous medium below the surface is not simulated in this work, the interaction between soil and
atmosphere such as evaporation is modeled using boundary conditions. The model is compared
both qualitatively and quantitatively to experimental data measured in three configurations
resulting in different flow regimes. Our results are included in the publication [A111].

Outlook

During the work on this thesis, we identified several interesting problems and directions for future
research. Here, we summarize a few of them.

The coupled LBM-MHFEM solver that was validated for vapor transport in air is the first step
towards the development of a flexible multiphysics solver. In the future, it can be extended to include
coupling with porous medium, thermodynamic effects, or component transport. The primary use
case for such solver is to investigate land-atmospheric interactions with soil surface disturbances (e.g.,
vegetation, micro-topography) and macro-porous disturbances in the subsurface. The resulting solver
would facilitate the symbiosis between modeling and experimental approaches for the investigation of
environmental processes.

The numerical models used in this work have several problems that hinder their application in
large-scale and complex scenarios. Notably, our MHFEM implementation is limited to fixed meshes
that cannot adapt to the simulated fields, and the LBM implementation assumes a uniform lattice. The
development of schemes for adaptive meshes and non-uniform lattice discretizations may be necessary
for successful use of these methods to solve real-world problems.

The performance and efficiency of the developed solvers was tested on the largest computing
systems that were available to the author at that time. However, many supercomputers in the world
are much larger and the scaling of the presented solvers on such systems should be investigated.
Furthermore, hardware as well as software platforms powering contemporary supercomputers are
continuously evolving. The TNL library supports parallelization via OpenMP and CUDA for multi-
core CPUs and NVIDIA GPUs, but the implementation of new backends (e.g., using HIP and SYCL) is
needed to provide support for other hardware platforms.

Finally, the TNL library has proved to be an effective tool for the development of scalable and flexible
numerical solvers. Its development requires continuous effort in order to keep up with the world. The
most important general directions of future development, as viewed by the author, are interoperability
with other libraries, improving the modular structure of the project, and using formal concepts in the
C++20 standard to improve type-checking, documentation, and compiler diagnostics.
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Chapter 1

Programming Techniqes for Modern
Parallel Architectures

The world entered the exascale era of computing in 2022 when the Frontier supercomputer [O40] was
installed with a performance of 1.102 exaFLOPS measured in the LINPACK benchmarks suite [O32,
O33]. This thesis originated in the pre-exascale era of computing and does not actually target the
world’s fastest supercomputers. The fastest computing system available to the author during his work
on the thesis was the Karolina supercomputer [O15], which was ranked 85th place in the TOP500 list
in November 2022 [O34] as the fastest supercomputer in the Czech Republic, with a performance of
6.75 petaFLOPS measured in the LINPACK benchmarks suite [O34].

Since 2007 [C24, M18], graphical processing units (GPUs) have been used more and more as
general-purpose computing accelerators. Over time, they evolved into powerful and efficient massively
parallel devices that drive the computational performance of contemporary supercomputers thanks
to their energy- and cost-efficiency [C4, A34, C14, A138, C35, C38]. As of November 2022, 7 out of
10 most powerful supercomputers according to the TOP500 list are based on GPU accelerators [O35].
Parallel compute accelerators such as GPUs are based on a conceptually different hardware architecture
compared to traditional processors based on the x86/x86-64 architectures. Much has been written about
characteristics and evolution of these platforms [B1, A34, C24]. This thesis does not aim to repeat the
summary, nevertheless, we need to highlight the main GPU hardware features:

• high number of simpler compute units (cores),

• smaller caches and orientation to data-parallel applications,

• groups of compute units and stacks of high-bandwidth global memory organized in scalable
hierarchies.

Overall, GPU accelerators are advantageous for compute-bound as well as memory-bound data parallel
applications.

To make the collection of individual accelerators and compute nodes scalable to the size of super-
computers, fast and scalable interconnections between the individual units are necessary. Technologies
such as NVLink and NVSwitch [A123, M21] allow for high-throughput and low-latency communication
between GPUs in a single node. Inter-node communication typically relies on switched fabric network
interconnections. State–of–the–art solutions for high-performance computing provide transfer speeds
up to 100Gbit/s per link [O41], latency around 0.5 µs [O41], remote direct memory access (RDMA)
capabilities to minimize CPU overhead [A123, C34], and acceleration of collective communication
operations [C22, C36]. Compute nodes can be organized in various network topologies such as fat
tree or dragonfly with multiple levels of network switches and links on higher levels can be aggregated
in order to increase the overall bandwidth of the network.
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1.1. Parallel programming frameworks

This thesis deals with the development of numerical solvers for parallel platforms, especially
GPUs that are indispensable for high-performance computing on modern systems. Even though the
implemented methods were not tested on the world’s largest supercomputers, we believe it should be
possible to upscale most of the developed algorithms and data structures to larger computing systems
thanks to similarity between GPU architectures.

The main programming language used in this thesis is C++, which is a state–of–the–art program-
ming language for modern, high-performance applications. In the following sections, we review the
parallel programming frameworks and high-level libraries designed to simplify parallel programming
in C++. The last section describes the Template Numerical Library where the author is a main developer
and which collects the author’s original work related to this chapter.

1.1 Parallel programming frameworks

This section provides a brief summary of parallel programming frameworks most commonly used in
high-performance computing. To compare the individual programming styles, we show examples of a
parallel axpy operation, i.e., the computation of~ B Ux+~ for given vectors x ,~ and scalar multiplierU .
In the C language, a sequential axpy operation can be implemented as shown below, where index_t and
value_t are user-defined aliases for the indexing type (e.g., int) and value type (e.g., float), respectively.

1 void sequential_axpy(index_t size, value_t alpha, value_t* x, value_t* y)
2 {
3 for (index_t i = 0; i < size; i++)
4 y[i] = alpha * x[i] + y[i];
5 }

Note that the list of frameworks discussed in the following subsections is not exhaustive. Other
high-performance computing frameworks related to the C and C++ languages include Boost.Thread
[O42], HPX [A105, O16], RaftLib [C11], and Unified Parallel C [M7].

1.1.1 POSIX threads (multi-core CPUs)

POSIX threads (pthreads) [M26] is a parallel execution model for multi-core processors and shared
memory systems. It is an application programming interface (API) standardized in 1996 with imple-
mentations available for many Unix-like systems as well as Microsoft Windows. The API provides
complete functionality for thread management, synchronization, mutexes and semaphores, condition
variables, and spinlocks. The API consists of a set of types, functions and constants defined in the C
programming language, which can be used from practically any other higher-level language. Details
on programming with POSIX threads can be found in [B9].

A parallel axpy operation can be implemented using POSIX threads as follows. First, wemust define
a structure to store the parameters that will be passed to the thread function. For our example, we need
to pass the range of elements to be processed by the thread, which is represented by the begin and end

indices, the scalar multiplier alpha, and pointers to the vectors x and y:

1 typedef struct
2 {
3 index_t begin;
4 index_t end;
5 value_t alpha;
6 value_t* x;
7 value_t* y;
8 } arg_struct;
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1.1.1. POSIX threads (multi-core CPUs)

The function thread_axpy that will be executed by each thread must have the signature
void* thread_axpy(void* arg), where arg is an opaque pointer to the function arguments. The thread
function converts the pointer to arg_struct*, computes the sequential axpy operation on the given
range of elements, and calls pthread_exit at the end:

1 void* thread_axpy(void* arg)
2 {
3 // get the parameters
4 arg_struct* param = arg;
5
6 // sequential axpy on the given range of elements
7 for (index_t i = param->begin; i < param->end; i++)
8 param->y[i] = param->alpha * param->x[i] + param->y[i];
9

10 pthread_exit(NULL);
11 }

The final piece of the implementation is the partitioning of the work among threads, initialization
of the argument structures for each thread, and launching the thread functions. In the example below,
we set the number of threads to the number of CPU cores in the system and partition the array size
uniformly among the threads. Note that the storage containing arguments for a thread must not be
changed during its execution, so we create an array of these structures similarly to the array of threads.
The threads are created with their compute function and arguments in a loop using the pthread_create

function and the pthread_join function is used in a separate loop to wait for all threads to finish their
work.

1 void parallel_axpy(index_t size, value_t alpha, value_t* x, value_t* y)
2 {
3 // set number of threads (equal to the number of cores in the system)
4 int num_threads = sysconf(_SC_NPROCESSORS_ONLN);
5 // calculate the block size
6 index_t block_size = (size + num_threads - 1) / num_threads;
7
8 // reserve space for thread objects
9 pthread_t threads[num_threads];

10 // reserve space for thread args
11 arg_struct thread_args[num_threads];
12
13 for (int i = 0; i < num_threads; i++) {
14 // initialize parameters for the i-th thread
15 thread_args[i].begin = i * block_size;
16 thread_args[i].end = (i + 1) * block_size;
17 if (thread_args[i].end > size)
18 thread_args[i].end = size;
19 thread_args[i].alpha = alpha;
20 thread_args[i].x = x;
21 thread_args[i].y = y;
22 // create the i-th thread
23 pthread_create(&threads[i], NULL, thread_axpy, (void*) &thread_args[i]);
24 }
25
26 // wait for all threads to finish their work
27 for (int i = 0; i < num_threads; i++)
28 pthread_join(threads[i], NULL);
29 }
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1.1.2. Threading Building Blocks

1.1.2 Threading Building Blocks

Threading Building Blocks (TBB) [O13] is a C++ template library developed by Intel for parallel
programming on multi-core processors. It was originally developed as a separate library and later
became part of the oneAPI collection under the name oneTBB. It is a high-level library, but still allows
the programmer strong control over the parallel execution details affecting the performance. TBB
was created in 2006 and its design patterns influenced the inclusion of parallel programming support
in modern C++ standards. TBB provides functionality for thread management and task scheduling,
scalable memory allocation, parallel algorithms, and concurrent containers. Details on programming
with TBB can be found in [B32].

TBB provides a high-level function tbb::parallel_for that allows to implement a parallel axpy
operation analogously to the POSIX threads approach using just a few lines of code:

1 void parallel_axpy(index_t size, value_t alpha, value_t* x, value_t* y)
2 {
3 tbb::parallel_for(
4 // global range of elements
5 tbb::blocked_range<std::size_t>(0, size),
6 // compute function executed by threads
7 [=](const tbb::blocked_range<std::size_t>& r) {
8 // process the local range `r` sequentially
9 for (std::size_t i = r.begin(); i < r.end(); ++i)

10 y[i] = alpha * x[i] + y[i];
11 }
12 );
13 }

Thefirst parameter of the tbb::parallel_for function represents the global range of elements that is split
into subranges that are processed by individual threads. The second parameter of the tbb::parallel_for

function defines the compute function that is executed by a particular thread for its subrange of
elements that is denoted by the parameter r of the inner function. Here, the compute function is
implemented using a lambda expression, a feature introduced in the C++11 language standard. Since
the compute function operates only with scalar values and pointers, all variables can be captured by
value and thus the capture list of the lambda expression contains just = for simplicity.

1.1.3 OpenMP and OpenACC

OpenMP [A51] is a multi-platform parallelization API for shared-memory systems. It is based on
compiler directives and provides library routines to query and modify the execution context at run-
time. Furthermore, the parallel execution can be affected by environment variables.

The axpy operation is a very simple example that can be parallelized with OpenMP by adding a
single line with a #pragma directive before the loop in the sequential version:

1 void parallel_axpy(index_t size, value_t alpha, value_t* x, value_t* y)
2 {
3 #pragma omp parallel for
4 for (index_t i = 0; i < size; i++)
5 y[i] = alpha * x[i] + y[i];
6 }

In this example, the compiler preprocessor interprets the #pragma omp parallel for directive and
modifies the code to add parallel execution of the loop following the directive. At run-time, a number
of threads is spawned, the iteration range is partitioned into chunks of contiguous elements and each
chunk is processed by a thread. When all work is finished, the threads are joined and the sequential
processing of code after the loop continues.

8



1.1.4. OpenCL

OpenMP provides many other clauses that may be used in the #pragma omp directives in more
complex cases. It is obvious that OpenMP greatly simplifies parallelization in straightforward cases
where the provided #pragma directives are sufficiently expressive. However, the reliance on compiler
directives removes some level of control from the programmer, which may lead to workflow and
performance problems. Most notably, OpenMP directives may conflict with features introduced in
modern C++ standards [O11]. Also due to ghost code added by the compiler in place of #pragma
directives, debugging synchronization bugs, race conditions and performance regressions may be more
difficult compared to other frameworks. Furthermore, OpenMP does not guarantee interoperability
with other multi-threading libraries. Hence, combining OpenMP with TBB, POSIX threads, or other
library results in undefined behavior, which leads to non-portable code in the best case.

OpenACC [M29] is a standard similar to OpenMP, which is designed to simplify parallel program-
ming for heterogeneous systems consisting of multi-core processors and accelerators. The program-
ming style of OpenACC has basically the same advantages and disadvantages as OpenMP. The axpy
operation can also be parallelized in OpenACC by adding a single line with a #pragma directive:

1 void parallel_axpy(index_t size, value_t alpha, value_t* x, value_t* y)
2 {
3 #pragma acc parallel loop
4 for (index_t i = 0; i < size; i++)
5 y[i] = alpha * x[i] + y[i];
6 }

Depending on the compiler options, the parallel loop may be executed either on CPU or offloaded to
an accelerator.

Several years after OpenACC was introduced, the OpenMP standard version 4.0 from 2013 added
support for offloading parallel execution to accelerators. However, the need for handling data transfers
further complicates the API and as of 2023, the support for offloading in OpenMP compilers is still
very limited or not available at all. Overall, high-level parallelization approaches such as OpenMP or
OpenACC cannot compete with native frameworks such as CUDA in terms of performance [C9].

1.1.4 OpenCL

OpenCL [M10] is a parallel programming framework for heterogeneous platforms consisting of CPUs,
GPUs, and other hardware accelerators. It is based on the C and C++ languages, but it does not
follow a single-source approach and the kernel functions (i.e., code that is executed on the accelerators)
must be compiled separately from the main program and loaded at run-time. Unlike OpenMP and
OpenACC, OpenCL is a low-level language standard that provides higher performance and wider range
of implementations for different hardware platforms.

It is hard to demonstrate a simple parallel program implemented in OpenCL. As the kernel function
for axpy must be compiled separately, we embed its source code in a string in the main program
for simplicity. For a more flexible approach in larger projects, loading of external files could be
implemented. The function is annotated with the __kernel specifier and the pointers to the global
memory of the accelerator with __global:

1 const char* kernel_source =
2 "__kernel void axpy(int size, \n"
3 " float alpha, \n"
4 " __global float* x, \n"
5 " __global float* y) \n"
6 "{ \n"
7 " int i = get_global_id(0); \n"
8 " if (i < size) \n"
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9 " y[i] = alpha * x[i] + y[i]; \n"
10 "} \n";

Since the main program involves calling many OpenCL runtime functions that may result in errors,
we first define an auxiliary function for checking the state of an error variable:

1 void checkErr(cl_int err, const char* name)
2 {
3 if (err != CL_SUCCESS) {
4 fprintf(stderr, "ERROR: %s returned code %d\n", name, err);
5 exit(EXIT_FAILURE);
6 }
7 }

The implementation of the parallel axpy operation follows by getting the OpenCL platform ID,
obtaining a device ID, and creating an OpenCL compute context and command queue:

1 void
2 parallel_axpy(index_t size, value_t alpha, value_t* x, value_t* y)
3 {
4 // error code returned from api calls
5 int err;
6
7 // get the platform ID
8 cl_platform_id platform;
9 err = clGetPlatformIDs(1, &platform, NULL);

10 checkErr(err, "clGetPlatformIDs");
11
12 // connect to a compute device
13 cl_device_id device_id;
14 err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &device_id, NULL);
15 checkErr(err, "clGetDeviceIDs");
16
17 // create a compute context
18 cl_context context = clCreateContext(0, 1, &device_id, NULL, NULL, &err);
19 checkErr(err, "clCreateContext");
20
21 // create a command queue
22 cl_command_queue command_queue =
23 clCreateCommandQueueWithProperties(context, device_id, NULL, &err);
24 checkErr(err, "clCreateCommandQueueWithProperties");

At this point, the separate source code stored in the kernel_source string can be loaded into the OpenCL
runtime and compiled. The desired kernel function (named axpy) is extracted into the kernel object:

25 // create the compute program from the source string
26 cl_program program = clCreateProgramWithSource(context, 1, &kernel_source, NULL, &err);
27 checkErr(err, "clCreateProgramWithSource");
28
29 // build the program executable
30 err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
31 checkErr(err, "clBuildProgram");
32
33 // create the compute kernel in the program we wish to run
34 cl_kernel kernel = clCreateKernel(program, "axpy", &err);
35 checkErr(err, "clCreateKernel");

Before the kernel can be launched, the input data must be prepared. In our case, we need to allocate
arrays in the device memory and copy the data from the x and y arrays in the host memory. The
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allocation is a blocking operation on the context and the copy operations are enqueued to the command
queue:

36 // allocate the x and y arrays in device memory
37 cl_mem device_x;
38 cl_mem device_y;
39 device_x = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(value_t) * size, NULL, NULL);
40 device_y = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(value_t) * size, NULL, NULL);
41 if (!device_x || !device_y) {
42 printf("ERROR: failed to allocate device memory\n");
43 exit(EXIT_FAILURE);
44 }
45
46 // copy the x and y arrays from host memory to device memory
47 err = clEnqueueWriteBuffer(command_queue, device_x, CL_TRUE, 0, sizeof(value_t) * size, x, 0, NULL,

NULL);↩→
48 checkErr(err, "clEnqueueWriteBuffer");
49 err = clEnqueueWriteBuffer(command_queue, device_y, CL_TRUE, 0, sizeof(value_t) * size, y, 0, NULL,

NULL);↩→
50 checkErr(err, "clEnqueueWriteBuffer");

When the input data is prepared, arguments of the kernel function can be set and the kernel can be
enqueued to the command queue. Note that in this example we assume that index_t is an alias for int

and value_t is an alias for float in order to match the types used in the kernel function.

51 // set the compute kernel arguments
52 err = 0;
53 err |= clSetKernelArg(kernel, 0, sizeof(index_t), &size);
54 err |= clSetKernelArg(kernel, 1, sizeof(value_t), &alpha);
55 err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &device_x);
56 err |= clSetKernelArg(kernel, 3, sizeof(cl_mem), &device_y);
57 checkErr(err, "clEnqueueWriteBuffer");
58
59 // execute the kernel over the entire range of our 1d input data set
60 // using the maximum number of work group items for this device
61 size_t global_size = size;
62 err = clEnqueueNDRangeKernel(command_queue, kernel, 1, NULL, &global_size, NULL, 0, NULL, NULL);
63 checkErr(err, "clEnqueueNDRangeKernel");

Finally, when the execution of the kernel is finished, the result can be copied from the device memory
to the host memory:

64 // wait for the command queue to get serviced before reading back results
65 clFinish(command_queue);
66
67 // copy the y array from device memory to host memory
68 err = clEnqueueReadBuffer(command_queue, device_y, CL_TRUE, 0, sizeof(value_t) * global_size, y, 0,

NULL, NULL);↩→
69 checkErr(err, "clEnqueueReadBuffer");

For correctness, allocated resources are released after successful completion:

70 // release allocated resources
71 clReleaseMemObject(device_x);
72 clReleaseMemObject(device_y);
73 clReleaseKernel(kernel);
74 clReleaseProgram(program);
75 clReleaseCommandQueue(command_queue);
76 clReleaseContext(context);
77 }
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1.1.5 CUDA

CUDA [M19] is a parallel programming framework and API for general-purpose computing on NVIDIA
GPU accelerators. It is based on the C++ programming language with certain extensions and limita-
tions. CUDA is also accessible from many other programming languages via either direct bindings or
high-level interface libraries. The CUDA toolkit provides a compiler toolchain for the CUDA language,
developer tools facilitating debugging and optimization, a rich set of accelerated scientific libraries, and
an extensive documentation with examples and tutorials. Together with OpenCL, CUDA has pushed
the frontiers of high-performance computing on general-purpose GPU accelerators and inspired the
creation of other parallel programming frameworks, such as ROCm/HIP and SYCL.

Unlike OpenCL, CUDA provides a single-source embedded domain-specific language (eDSL), called
CUDA Runtime API, where the code for the execution on host and device can be defined in the
same source file. This greatly improves the programming productivity and provides better integration
between the host and device sides in terms of type checking and supported features (e.g., templates).

The kernel function for the axpy operation, which is executed by threads on the GPU, can be
implemented similarly to the preceding OpenCL example. The main difference is that the function
can be defined directly in the source code rather than a string:

1 __global__ void kernel_axpy(index_t size, value_t alpha, value_t* x, value_t* y)
2 {
3 int i = blockIdx.x * blockDim.x + threadIdx.x;
4 if (i < size)
5 y[i] = alpha * x[i] + y[i];
6 }

As in the OpenCL example, we define an auxiliary function for convenient error checking:

1 void checkErr(cudaError_t err, const char* name)
2 {
3 if (err != cudaSuccess) {
4 fprintf(stderr, "ERROR: %s returned code %d\n", name, err);
5 exit(EXIT_FAILURE);
6 }
7 }

The ideas behind the parallel axpy function are also similar to the OpenCL example, but the
implementation is overall much simpler as the programmer only needs to deal with data management
and kernel launch. First, we need to allocate arrays in the device memory and copy the data from the
x and y arrays in the host memory:

1 void parallel_axpy(index_t size, value_t alpha, value_t* x, value_t* y)
2 {
3 cudaError_t err;
4
5 // allocate the x and y arrays in device memory
6 value_t* device_x, device_y;
7 err = cudaMalloc((void**) &device_x, sizeof(value_t) * size);
8 checkErr(err, "cudaMalloc");
9 err = cudaMalloc((void**) &device_y, sizeof(value_t) * size);

10 checkErr(err, "cudaMalloc");
11
12 // copy the x and y arrays from host memory to device memory
13 err = cudaMemcpy(device_x, x, sizeof(value_t) * size, cudaMemcpyHostToDevice);
14 checkErr(err, "cudaMemcpy");
15 err = cudaMemcpy(device_y, y, sizeof(value_t) * size, cudaMemcpyHostToDevice);
16 checkErr(err, "cudaMemcpy");
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When the input data is prepared in the device memory, the kernel can be launched with thread block
and grid sizes appropriate for the size of input dataset. Without explaining the thread hierarchy in the
CUDA programming model, these values can be used for the axpy operation with 1D data:

18 dim3 blockSize, gridSize;
19 blockSize.x = 256;
20 gridSize.x = (size + blockSize.x - 1) / blockSize.x;
21 kernel_axpy<<<gridSize, blockSize>>>(size, alpha, device_x, device_y);

Finally, we wait for the kernel execution to finish, copy the result from device memory to host memory,
and deallocate the temporary arrays:

22 // wait for the kernel to finish before reading back results
23 cudaDeviceSynchronize();
24
25 // copy the y array from device memory to host memory
26 err = cudaMemcpy(y, device_y, sizeof(value_t) * size, cudaMemcpyDeviceToHost);
27 checkErr(err, "cudaMemcpy");
28
29 // release allocated resources
30 cudaFree(device_x);
31 cudaFree(device_y);
32 }

1.1.6 ROCm and HIP

ROCm [M2] is a software platform for parallel programming of AMD general-purpose GPU accelera-
tors. It serves as the driver for code execution of several frameworks, including OpenMP, OpenCL, and
HIP. HIP [M1] is a portable interface designed as a generalization of the CUDA Runtime API, providing
a similar programming model for AMDGPUs. HIP can be installed with either AMD ROCm or NVIDIA
CUDA as the target platform, but the general interface has some limitations due to hardware differences
and the latter is not fully supported by AMD.

The parallel axpy operation can be implemented almost identically to the preceding CUDA example:
it is sufficient to replace all occurrences of cuda in the source code with hip (e.g., hipMalloc instead of
cudaMalloc and so on). Hence, we omit the example for the HIP platform in this work.

1.1.7 SYCL

SYCL [M11] is a single-source embedded domain-specific language (eDSL) based on pure C++17
providing an open standard for heterogeneous computing. It evolved from the OpenCL standard and
has been generalized to be able to target other systems. Multiple implementations of the SYCL standard
exist providing support for many hardware architectures. The most mature implementation is Intel
DPC++ [O12] from the oneAPI collection, which targets primarily Intel CPUs, GPUs, and FPGAs.

SYCL allows for a programming style similar to CUDA and HIP, where data movement and
dependencies between individual operations are managed explicitly by the programmer. Additionally,
SYCL provides the concepts of buffers and accessor that allow automatic asynchronous scheduling of
data movement based on the data accesses in individual device kernels and host functions.

In the following, we show an implementation of the parallel axpy operation with explicit data
movement. First, a type must be declared at namespace scope to provide the name of the device kernel:

1 struct kernel_axpy;
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The parallel axpy function can be implemented following the same general structure as in the
preceding OpenCL and CUDA examples:

1 void parallel_axpy(index_t size, value_t alpha, value_t* x, value_t* y)
2 {
3 // create a queue for a default-selected device
4 auto queue = sycl::queue{sycl::default_selector{}};
5
6 // allocate the x and y arrays in device memory
7 value_t* device_x = sycl::malloc_device<value_t>(size, queue);
8 value_t* device_y = sycl::malloc_device<value_t>(size, queue);
9 if (!device_x || !device_y) {

10 std::cerr << "ERROR: could not allocate device arrays" << std::endl;
11 std::terminate();
12 }
13
14 // copy the x and y arrays from host memory to device memory
15 queue.memcpy(device_x, x, sizeof(value_t) * size).wait();
16 queue.memcpy(device_y, y, sizeof(value_t) * size).wait();
17
18 // execute a device kernel
19 queue.parallel_for<kernel_axpy>(
20 sycl::range(size),
21 [=](sycl::item<1> item) {
22 auto i = item.get_id();
23 device_y[i] = alpha * device_x[i] + device_y[i];
24 }
25 ).wait();
26
27 // copy the y array from device memory to host memory
28 queue.memcpy(y, device_y, sizeof(value_t) * size).wait();
29
30 // release allocated resources
31 sycl::free(device_x, queue);
32 sycl::free(device_y, queue);
33 }

Notice that SYCL makes use of an explicit queue object where individual asynchronous operations are
enqueued, whereas CUDA uses the concept of streams and provides a default stream that can be used in
simple cases. SYCL also provides several interfaces to submit parallel tasks, the parallel_for interface
(similar to TBB) was used above.

1.1.8 Message Passing Interface

The Message Passing Interface (MPI) [M15] is a de facto standard interface for parallel programming
on distributed platforms. It is available natively for C and Fortran and interfaces exist for many other
programming languages, including object-oriented libraries developed in high-level languages. MPI
follows the single program, multiple data (SPMD) programming style, where multiple instances of the
same program are executed at the same time and operate on different pieces of data from the global
dataset. The interface deals with communication among the individual instances, hereafter referred
to as MPI processes or ranks, via message passing. In general, MPI ranks are executed on a set of
independent computing systems, hereafter referred to as nodes, which are interconnected by a network.
When the ranks are executed on a single node with a shared memory, the MPI library can choose
to optimize out the need for explicit message passing, otherwise messages need to be assembled by
the sending process, transferred via the network layer, and disassembled by the receiving process.
Thus, network communication may incur a considerable overhead to the algorithm that is not present
when it is parallelized in a non-distributed manner. However, dealing with network communication
is necessary to utilize compute resources provided by modern supercomputers efficiently and various
techniques for the development of scalable algorithms exist.
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It is not the purpose of this thesis to explain all concepts used in the MPI standard. Many books are
dedicated to explaining the basics of MPI programming as well as advanced features and optimizations,
for example [B17, B18]. Here we describe only the most important concept, communicators. A commu-
nicator is an object that provides a context for communication among a group of MPI processes. Each
communicator is characterized by its ID/tag that differentiates messages from different communicators,
and a group of processes that provides a rank-namingmechanism based on numeric IDs that are used for
addressing of the messages. Themost common communicator is denoted by the constant MPI_COMM_WORLD
and comprises all ranks participating in the invocation of an MPI program. Communicators are
represented by the type MPI_Comm and MPI provides several functions to create a custom communicator,
for example:

• MPI_Comm_dup creates a duplicate of given communicator using the same process group and its
rank-naming.

• MPI_Comm_split creates communicators by partitioning the process group associated to an existing
communicator into several disjoint subgroups. Each process falls into exactly one subgroup based
on the value of the color parameter of the MPI_Comm_split function, each subgroup contains all
processes that specified the same color.

• MPI_Comm_split_type creates communicators similarly to MPI_Comm_split, but uses different criteria
for partitioning. The split_type parameter is used instead of color and all ranks must supply the
same value of this parameter. For example, using the type MPI_COMM_TYPE_SHARED splits the group
into subgroups of processes that can communicate via shared memory (i.e., they are running on
the same node of a distributed computing system).

• MPI_Comm_create creates a new communicator by specifying an arbitrary group of processes
represented by the MPI_Group type. MPI provides several functions for manipulating process
groups, for example MPI_Group_difference, MPI_Group_intersection, and MPI_Group_union.

1.2 High-level libraries with backend systems

This section provides an overview of libraries that provide high-level abstractions and general interfaces
for common aspects of parallel computing. They are designed to enhance programmer’s productivity
while enabling performance portability between different hardware platforms. While an implementa-
tion of an algorithm using a standard high-level interface may not be the most optimal one, it is often
good enough and it can be further optimized later when the need for improvement is identified. Note
that the list is not exhaustive; only projects featuring the most successful concepts are introduced.

1.2.1 Thrust and rocThrust

Thrust [M23, O26] is a C++ library of parallel algorithms providing backends for parallel execution on
CPU (via OpenMP or TBB) and GPU (via CUDA). Thrust is included as a header-only library in the
CUDA toolkit. Together with TBB, Thrust inspired the introduction of parallel algorithms to the C++
Standard Library. Thrust provides a collection of algorithms such as parallel iteration, reduce, scan,
sort, and other common patterns that can be expressed in terms of these primitives. The high-level
interfaces of the algorithms are built on top of iterators [O4] that can be composed together to express
complex algorithms in a concise and readable manner.

The parallel axpy operation for the host backend (i.e., execution on CPU) can be implemented in a
straightforward way using the thrust::transform function:
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1 void parallel_axpy_host(index_t size, value_t alpha, value_t* x, value_t* y)
2 {
3 thrust::transform(
4 thrust::host, // execution backend
5 x, // beginning of the first input sequence
6 x + size, // end of the first input sequence
7 y, // beginning of the second input sequence
8 y, // beginning of the output sequence
9 [alpha](value_t x_val, value_t y_val) // transformation function applied to

10 { return alpha * x_val + y_val; } // pairs of input elements
11 );
12 }

The individual parameters of the function are described in the comments in the code block. Note
that raw pointers are used as forward random access iterators and the transformation function is
implemented in terms of a lambda expression that captures the alpha variable and operates on a pair of
elements from the two input iterators. The transform function writes the result of the lambda expression
to the output iterator.

To execute the axpy operation on GPU using the device backend, the input data must be first
transferred to the device memory and the result must be copied back to the host memory after the
thrust::transform function is executed. This can be achieved with the thrust::device_vector container
and the thrust::copy algorithm that automatically detects the appropriate memory space:

1 void parallel_axpy_device(index_t size, value_t alpha, value_t* x, value_t* y)
2 {
3 // allocate arrays on the device
4 thrust::device_vector<value_t> x_device(size);
5 thrust::device_vector<value_t> y_device(size);
6
7 // copy the arrays from host to device
8 thrust::copy(x, x + size, x_device.begin());
9 thrust::copy(y, y + size, y_device.begin());

10
11 // perform the axpy operation
12 thrust::transform(
13 thrust::device, // execution backend
14 x_device.begin(), // beginning of the first input sequence
15 x_device.end(), // end of the first input sequence
16 y_device.begin(), // beginning of the second input sequence
17 y_device.begin(), // beginning of the output sequence
18 [alpha] __device__ (value_t x_val, value_t y_val) // transformation function applied to
19 { return alpha * x_val + y_val; } // pairs of input elements
20 );
21
22 // copy the result from device to host
23 thrust::copy(y_device.begin(), y_device.end(), y);
24 }

Note that the transformation function has been annotated as __device__ so that it can be executed on the
GPU. Thus, the example relies on the --extended-lambda and --expt-relaxed-constexpr flags to be passed
to the nvcc compiler. It is possible to avoid these flags by implementing the transformation via a functor
instead of a lambda expression, but that solution is considerably more verbose.

rocThrust [O1] is a port of the Thrust library to the ROCm/HIP platform. rocThrust provides the
same interface as Thrust, so the example above works without any change even on AMD GPUs. The
only part that needs to be changed is the compiler: hipcc can be used instead of nvcc and it does not
need any special flags.

Note that Thrust and rocThrust provide a zip-iterator that can be used to iterate over more than
two input iterators at the same time. This can be used, for example, to sum more than two vectors.
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1.2.2 Thread support in STL

The C++17 standard defines an interface for parallel algorithms in the Standard Template Library (STL)
based on iterators [O4], which is inspired by the TBB and Thrust libraries. The standard extends the
former collection of sequential algorithms defined in the algorithm header file. The new interface
is provided in a separate header file execution, however, not all STL implementations provide it.
The libstdc++ implementation from the GNU Compiler Collection (GCC) since version 9 provides an
implementation of the standardized parallel algorithms using the TBB library for parallel execution.

The parallel axpy operation can be implemented in STL very similarly to the Thrust example, using
the std::transform function:

1 void parallel_axpy(index_t size, value_t alpha, value_t* x, value_t* y)
2 {
3 std::transform(
4 std::execution::par_unseq, // execution policy
5 x, // beginning of the first input sequence
6 x + size, // end of the first input sequence
7 y, // beginning of the second input sequence
8 y, // beginning of the output sequence
9 [alpha](value_t x_val, value_t y_val) // transformation function applied to

10 { return alpha * x_val + y_val; } // pairs of input elements
11 );
12 }

In this example, we used the std::execution::par_unseq execution policy that allows parallelization
and vectorization of the inner function. Other execution policies defined by the C++17 stan-
dard are std::execution::par that allows parallelization but not vectorization within threads, and
std::execution::seq that implies sequential execution in the calling thread. C++20 also defines
std::execution::unseq that allows vectorization, but not parallelization. Furthermore, implementations
of the standard library are allowed to provide additional execution policies, for example to target parallel
execution on GPU accelerators.

Note that as of C++20, STL does not provide an interface to iterate over more than two input
iterators at the same time. The concept of a zip-iterator is planned for the C++23 standard, which will
allow to compose an arbitrary number of sequences next to each other in a single iterator. However, the
interface used in TBB, where the inner function operates with a range of indices rather than iterators,
is apparently simpler and more appropriate for this case.

1.2.3 Kokkos

Kokkos [A170] is a collection of modules (subprojects) that facilitate portable performance program-
ming in C++. The fundamental module, Kokkos Core [A171], defines the programming model based
on parallel execution and memory abstractions. It has influenced other frameworks (e.g., SYCL) as well
as the development of C++ standards (e.g., std::mdspan in the future C++23 standard). Derived modules
provide additional higher-level functionality, such as math kernels for dense and sparse linear algebra
and graph operations. Many projects with broader scope use Kokkos for parallelization, for example
Trilinos [O37].

Kokkos Core can be used either from a system-wide installation or included, configured and built
within a project. As of version 3.7.1, Kokkos Core provides backends for parallel execution using C++
Threads, OpenMP, CUDA, HIP, SYCL, and HPX. At most one GPU device backend and one parallel CPU
backend can be enabled at a time during Kokkos Core installation. Additionally, Kokkos Core provides
a serial backend that can be used as fallback.

To use Kokkos Core in a program, its backend system must be initialized before first use and
finalized after last use. This is done typically in the main function, for example:
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1 int main(int argc, char** argv)
2 {
3 Kokkos::initialize(argc, argv);
4
5 // program execution...
6
7 Kokkos::finalize();
8 return EXIT_SUCCESS;
9 }

The core functionality of Kokkos Core is based on an abstract machine model consisting of several
components related to data management and code execution:

• memory space defines where data resides (e.g., host memory, device global memory, registers),

• memory layout defines how the data is stored (e.g., row-major or column-major),

• memory traits define how the data is accessed by an algorithm (e.g., read-only or atomic writes),

• execution space defines where a function is executed (e.g., CPU or GPU),

• execution policy defines how a function is executed (e.g., a one-dimensional or multi-dimensional
range of fully independent threads or hierarchical groups of collaborative threads),

• execution pattern defines the type of operation that is subject of parallel dispatch (e.g., parallel_for,
parallel_reduce, parallel_scan, or single tasks with dependencies).

The strong data abstraction model is a prominent feature of Kokkos that allows for transparent memory
layout changes (i.e., without rewriting algorithms) to satisfy different data access pattern on different
hardware. Kokkos Core provides hierarchical parallelism with leagues of teams of threads, which was
inspired by the CUDA programming model and can be mapped to any other parallel backend. At each
level of the thread hierarchy, an execution pattern such as parallel_for or parallel_reduce can be used.
Furthermore, Kokkos Core provides high-level algorithms such as parallel STL algorithms, and data
structures such as high-performance unordered map. Further details on the Kokkos Core programming
model and provided functionality can be found in its documentation [O17].

The parallel axpy function can be implemented using Kokkos Core as follows. Since the input
arrays are specified using raw pointers as in previous examples, we first create Kokkos views in order
to encode the memory space in the data structures:

1 void parallel_axpy(index_t size, value_t alpha, value_t* x_raw, value_t* y_raw)
2 {
3 // create host views for the input arrays
4 using host_view = Kokkos::View<value_t*, Kokkos::HostSpace>;
5 host_view x_host(x_raw, size);
6 host_view y_host(y_raw, size);

Next, we define space where the axpy operation will be executed and a view type for data residing in
its preferred memory space:

7 // define the execution space and accessible view type
8 using exe_t = Kokkos::DefaultExecutionSpace;
9 using view_t = Kokkos::View<value_t*, typename exe_t::memory_space>;
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Before we execute the parallel algorithm, we must ensure that the data resides in an accessible memory
space. Recall that Kokkos Core may be configured such that DefaultExecutionSpace refers either to a
host backend or a device backend. In the former case, no further memory operations are necessary,
since the x_host and y_host views created above are accessible from host backends. In the latter case,
however, it is necessary to allocate separate arrays in the memory space of the default execution space
and perform a deep copy of the data from the host views. Both of these cases can be handled using the
Kokkos::create_mirror_view_and_copy function:

10 // mirror the views in the memory space of exe_t
11 view_t x = Kokkos::create_mirror_view_and_copy(exe_t(), x_host);
12 view_t y = Kokkos::create_mirror_view_and_copy(exe_t(), y_host);

When the data is prepared, the execution policy can be defined and the axpy kernel can be executed:

13 // execute the kernel on the device
14 using RangePolicy = Kokkos::RangePolicy<exe_t>;
15 Kokkos::parallel_for(
16 "axpy", // name of the kernel
17 RangePolicy(0, size), // iteration range
18 KOKKOS_LAMBDA (index_t i) { // kernel function
19 y[i] = alpha * x[i] + y[i];
20 }
21 );

Finally, we must remember to copy the result back to the host memory in case the execution happened
in the device space:

22 // copy the y array from device memory to host memory
23 Kokkos::deep_copy(y_host, y);
24 }

Note that the Kokkos::deep_copy function has no effect when the y_host and y views are aliases to the
same array in the host memory space.

1.3 Template Numerical Library

In this section, we describe Template Numerical Library, an open-source project that is developed
mainly by the author and his supervisor. The content is based on the paper [A142] with updates due to
recent changes in the library. The text provides a high-level view on the project, detailed description
of the features and usage examples can be found in its documentation [O31].

1.3.1 Introduction

Template Numerical Library [A142] is a project that aims to simplify the development of high-
performance numerical solvers and methods, especially in the field of computational fluid dynamics.
It is an open-source project developed in C++ and relies on modern features of the language, currently
the C++17 standard. In order to simplify installation and inclusion in other projects, TNL is designed
as a header-only library.

The name refers to C++ template meta-programming techniques that are used throughout the
library and often preferred over corresponding run-time approaches involving virtual functions that
have limited support in the CUDA framework [M19]. In general, this approach also leads to a more
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efficient code [B12, O24] at the cost of increased work at compile-time. Moreover, it encourages
detection of programming errors at compile-time. However, considering the development of modern
C++ standards, using the word “template” as part of the name does not differentiate it from other
libraries, since any successful C++ library must use templates.

Of the high-level libraries described in the previous section, Kokkos is the most general parallel
programming and performance portability library. TNL tries to be the next one and achieves it
by targeting a broader scope of problems. TNL is not only a parallel programming library, but
provides also algorithms and data structures for dense and sparse linear algebra, structured grids and
unstructured meshes, and other building blocks for advanced numerical solvers. Furthermore, TNL
has wrappers to simplify using low-level MPI functions in C++ and provides distributed data structures
with synchronizers based on MPI.

TNL does not follow a typical design for heterogeneous platforms where most computations
are performed by the CPU and specific tasks are offloaded to an accelerator, or where the work is
divided between accelerators and the CPU. Instead, TNL is designed for numerical solvers where most
computations are performed either entirely on CPU or a GPU accelerator. This is achieved by a Device

template parameter that allows to switch between computations on CPU, GPU, and potentially other
platforms. Of course, it is still necessary to rely on CPU for sequential tasks such as initialization or data
output, but themajority of time-consuming computations can be parametrized by Device. This approach
requires all data used in the computations to be allocated in the memory of the accelerator in order to
minimize datamovement between the systemmemory and accelerators, otherwise computationswould
be limited by communication over the PCIe bus. Data structures implemented in TNL provide an easy
way to manage data allocated in different address spaces.

Finally, an important aspect of the TNL design is that it simplifies the development of portable
parallel algorithms, a goal that is shared with other high-level libraries such as Thrust or Kokkos. This
means that algorithms or whole numerical solvers can be developed and debugged on CPUs, for which
many development tools are available, and then it can be switched to a different platform by changing
a single parameter. Based on our experience, many algorithms developed this way work on GPUs with
no or minor modifications due to different behavior of the parallel platforms.

1.3.2 Parallel programming components

TNL is based on a backend system for modern parallel architectures such as multi-core CPUs and GPU
accelerators, resulting in a high-level interface providing a simple and portable way of programming
these platforms. The current backends are based on OpenMP [A51] for CPU parallelization and CUDA
[M19] for GPU parallelization. Adding support for backends based on HIP [M1] and SYCL [M11] is
planned for the future.

Similar to Kokkos, the parallel programming interface in TNL is based on abstractions for various
memory and execution operations. The concept of allocators takes care of memory allocation, which is
the fundamental memory operation and corresponds roughly to the memory space concept in Kokkos.
TNL provides the following allocators in the TNL::Allocators namespace with an interface compatible
with STL: Host (alias for std::allocator), Cuda (allocations in the global memory of a GPU using
cudaMalloc), CudaHost (allocations in the host memory using cudaMallocHost), and CudaManaged (allocations
in the unified memory space using cudaMallocManaged). Next, TNL provides interface for additional
memory operations such as data copies (including source and target with mismatched address spaces),
comparison, construction and destruction of elements (objects) in allocated memory.

The main abstraction for code execution in TNL is realized by the Device template parameter of
various functions and classes. A device determines where and how the code is executed. TNL currently
provides the following devices in the TNL::Devices namespace: Sequential (sequential execution either
on CPU or within a GPU thread), Host (parallel execution on CPU via OpenMP), and Cuda (parallel
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execution on a GPU). Note that the device concept is not fixed and the implementation of additional
backends may require significant refactoring or even introduction of more refined concepts.

Furthermore, TNL provides fundamental parallel algorithms for common operations: parallelFor,
reduce, scan, and sort. These correspond to the same functionality present in other high-level libraries
and some parallel programming frameworks, such as Kokkos, SYCL, and TBB. The algorithms in TNL
use indices and lambda expressions for data access, not iterators like Thrust and STL. Some algorithms
like parallelFor expose an interface for fine-tuning execution details, such as specifying a CUDA stream
or dynamic shared memory size for CUDA kernels. The parameters are specified via an instance of the
LaunchConfiguration structure, which roughly corresponds to the execution policy concept in Kokkos.

Finally, TNL provides components for distributed computing based on MPI [M15]. These are based
on low-level wrappers for MPI functions with C interface, which simplify their usage in C++ and
provide basic portability layer (i.e., the wrappers provide common behavior for builds without MPI,
but switching to a different distributed computing framework is not supported). Higher-level utilities
are provided for common operations, e.g., reduce function template for scalar values, send and recv

function templates for the Array data structure, etc. On the highest level, distributed data structures are
implemented in order to provide an object-oriented view on distributed computing.

1.3.3 Data structures

TNL provides many common dynamic data structures, such as Array and Vector, DenseMatrix and
SparseMatrix, or NDArray (see Section 2.1 for details). Additional variants are implemented for each of
the aforementioned data structures:

• Views: Each dynamic data structure has an associated view data structure, which provides an
interface with non-owning and shallow-copy semantics. As a consequence, views cannot be
resized, can be rebound to other data (including external data structures), can be passed by value
to device functions such as CUDA kernels, and can be captured by value in lambda expressions.
Hence, they simplify data access in code for GPU accelerators.

• Distributed data structures: For each aforementioned data structure there is a distributed variant
(e.g., DistributedArray etc.) that implements an interface for object-oriented distributed comput-
ing via MPI. Each distributed data structure uses the original dynamic data structure to manage
the local data and provides access to global and local views of the data.

Besides dynamic data structures, TNL provides StaticArray, StaticVector and StaticNDArray that manage
data in fixed-size objects created in the stack segment of memory. They are usable in device code and
even constant expressions (e.g., constexpr functions).

Additionally, TNL provides advanced data structures specific to numerical applications, such as
grids and meshes. The data structure for unstructured meshes is described in detail in Section 2.2.
Similarly to the memory layout concept in Kokkos, most of the TNL data structures can be configured
with a template parameter to adjust the layout of the data in memory (e.g., row-major or column-major
matrices). TNL currently does not have an analogy to the memory traits concept in Kokkos.

1.3.4 Algorithms

TNL provides high-level functions for common operations based on the fundamental parallel algo-
rithms, for example, compare, contains, containsOnlyValue, or vector operations based on expression
templates [C30, A175]. More advanced algorithms include sparse matrix–vector multiplication and
other matrix operations, iterative solvers and preconditioners for systems of linear algebraic equations
with details described in Section 3.3.3, and solvers for systems of ordinary differential equations. Note
that the list is not exhaustive and other algorithms may be implemented in the future.

21



1.3.4. Algorithms

Finally, we show an example implementing the axpy operation in TNL. As in the preceding sections,
the input data is allocated in the host memory. A parallel version for the Host device can be implemented
using the parallelFor function and a simple lambda expression as follows:

1 void host_axpy(index_t size, value_t alpha, value_t* x, value_t* y)
2 {
3 // define the device type and execute the kernel on the host
4 using device_t = TNL::Devices::Host;
5 TNL::Algorithms::parallelFor<device_t>(
6 0, size, // iteration range
7 [=] (index_t i) { // kernel function
8 y[i] = alpha * x[i] + y[i];
9 }

10 );
11 }

Alternatively, expression templates implemented in TNL can be used to evaluate the vector operation.
This leads to even clearer code as the meta-code associated with the parallelFor function is avoided.
We only need to create a VectorView object for each vector in the expression:

1 void host_axpy(index_t size, value_t alpha, value_t* x_raw, value_t* y_raw)
2 {
3 // create host views for the input arrays
4 using host_view = TNL::Containers::VectorView<value_t, TNL::Devices::Host>;
5 host_view x(x_raw, size);
6 host_view y(y_raw, size);
7
8 // compute the vector expression
9 y = alpha * x + y;

10 }

Both variants of the host_axpy function can be adapted for computations on a GPU accelerator. First,
we create ArrayView objects associated to the Host device for the input arrays, then allocate Array objects
associated to the Cuda device, and copy the data from the host memory to the device memory:

1 void device_axpy(index_t size, value_t alpha, value_t* x_raw, value_t* y_raw)
2 {
3 // define the device type
4 using device_t = TNL::Devices::Cuda;
5
6 // create host views for the input arrays
7 using host_view = TNL::Containers::ArrayView<value_t, TNL::Devices::Host>;
8 host_view x_host(x_raw, size);
9 host_view y_host(y_raw, size);

10
11 // allocate arrays in the device memory and initialize them with the host data
12 using array_t = TNL::Containers::Array<value_t, device_t>;
13 array_t x_device, y_device;
14 x_device = x_host;
15 y_device = y_host;

In order to access the data in x_device and y_device from a lambda expression in the parallelFor function,
we must create views for the data, which can be captured by value in the lambda expression. Note that
the lambda expression must be marked with the __cuda_callable__ macro, which is an annotation for
functions that should be executable by the CPU as well as GPU. Additionally, the lambda expression
must have the mutable specifier so that the captured variables are modifiable:
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16 // obtain views accessible on the device
17 auto x = x_device.getView();
18 auto y = y_device.getView();
19
20 // execute the kernel on the device
21 TNL::Algorithms::parallelFor<device_t>(
22 0, size, // iteration range
23 [=] __cuda_callable__ (index_t i) mutable { // kernel function
24 y[i] = alpha * x[i] + y[i];
25 }
26 );

Finally, the result must be copied back to the host memory:

27 // copy the y array from device memory to host memory
28 y_host = y_device;
29 }

Programming the variant using expression templates on GPU is left as an exercise to the reader.
The functions host_axpy and device_axpy can be combined in a general parallel_axpy function as

follows. The __CUDACC__ macro is defined by the nvcc and clang++ compilers if and only if a CUDA source
code is being compiled. Hence, the code might be used in common header files for both C++ and CUDA
source files.

1 void parallel_axpy(index_t size, value_t alpha, value_t* x, value_t* y)
2 {
3 #ifdef __CUDACC__
4 device_axpy(size, alpha, x, y);
5 #else
6 host_axpy(size, alpha, x, y);
7 #endif
8 }

1.3.5 Future work

As is evident from the preceding description, TNL is an actively developed project with many features
in development. The most fundamental features planned for the future are backends based on modern
frameworks such as HIP [M1] and SYCL [M11]. Their development might also require refactoring of
existing facilities, namely the concept behind the Device template parameter should be revisited with
respect to the concepts of execution policies that are used in other high-level libraries such as Kokkos
[A170, A171], Thrust/STL [O26], or Ginkgo [A6]. Furthermore, aspects such as documentation, unit
tests, and benchmarks are continuously being improved.

Finally, the transition from a monolithic package to a more modular structure is being considered
for the TNL project. Introducing modules would allow clear separation of responsibilities for each part
of the project, clear definition of dependencies on external projects and between themodules, and better
overview of their completion status. Consequently, TNL developers would have to track the stability
of interfaces more carefully, for example using versioned releases that would also improve the usability
of TNL in downstream projects. This progress already started when the Python bindings for TNL were
moved to a separate repository named PyTNL [O30]. Candidates for new modules are features related
to image processing and advanced numerical methods such as FEM, MHFEM, or FVM.
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Chapter 2

Data Structures

Efficient data structures play an important role in high-performance computing, because they affect
where each data is stored in the computer memory and how quickly it can be accessed. Hence, data
structures and algorithms often have to be designed collectively in order to utilize the most efficient
access pattern on given hardware architecture.

In this chapter, we present several data structures implemented in the Template Numerical Library
that was introduced in Section 1.3, which are flexible in the sense that they can be configured for a
specific algorithm or hardware architecture.

2.1 Multidimensional arrays

Many algorithms in scientific computing work with coefficients indexed by three, four or even more
indices. Multidimensional arrays are therefore a natural data structure for organizing and storing such
values in the computer memory. Since the C++ language before its C++23 standard supports only
one-dimensional arrays natively, multidimensional arrays have to be implemented explicitly (e.g., in a
library) based on a mapping of multidimensional data to an internal one-dimensional array.

An interesting problem is how to choose the mapping from the multidimensional index space into
the one-dimensional index space. Even for two-dimensional arrays (i.e., matrices) it can be argued
whether they should be stored in the row-major format, where rows are stored as 1D arrays, or in
the column-major format, where columns are stored as 1D arrays. The optimal choice depends on the
operations that we want to do with the data, as well as on the hardware architecture that will process
the data. For example, the row-major format is suitable for algorithms processing a matrix row by row
on the CPU, while for GPU algorithms also processing a matrix row by row the column-major format
is more appropriate. For three- and more-dimensional arrays there are even more combinations of
possible array orderings.

For these reasons, we developed a data structure which allows to configure the indexing of multi-
dimensional data and thus optimize the data structure for given algorithm and hardware architecture.
The data structure was first proposed in [B20] and its implementation based on the C++14 standard was
later integrated into the TNL library and further developed therein. The TNL project’s documentation
[O31] provides an overview of the public interface and examples showing how the data structure can
be used. In the following subsections, we describe the distributed version of the data structure, which
is especially useful for the algorithms described in Chapters 4 and 5.

2.1.1 Distributed multidimensional array

In the distributed configuration, a global multidimensional array is decomposed into several subarrays
and each MPI rank typically stores the data associated to one subarray. Since a multidimensional
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Rank 0 Rank 1 Rank 2

Rank 3 Rank 4 Rank 5

Rank 6 Rank 7 Rank 8

Figure 2.1: Typical two-dimensional decomposition of a two-dimensional array into 9 subarrays
assigned to ranks 0-8.

array stores structured data, we will consider only structured conforming decompositions, where the
array is split by hyperplanes perpendicular to one of the axes. Figure 2.1 shows a typical two-
dimensional decomposition of a two-dimensional array into 9 subarrays. Note that the implementation
also allows multiple blocks to be assigned to the same rank, which can be seen as a generalization of the
requirement for conforming decompositions. This feature is useful for optimizing the decomposition
under various constraints, which will be described later in the following chapters.

In order to represent a distributed multidimensional array, each MPI rank needs to have the
following variables:

• localArray – an instance of a multidimensional array which contains data and indexing attributes
of the subarray assigned to the rank.

• communicator – the MPI communicator comprising all ranks that have a subarray of the global
multidimensional array.

• globalSizes – a multi-index determining the sizes of the global multidimensional array in terms
of the number of elements in each dimension.

• localBegins and localEnds – two multi-indices determining the beginning and ending position
of the local subarray in the global array. According to the convention used in TNL, the local
subarray spans the multidimensional interval [localBegins, localEnds).

Although these attributes of a distributed multidimensional array can be created separately and
managed manually, TNL provides a convenient data structure TNL::Containers::DistributedNDArray that
provides a high-level interface to manage these attributes. The TNL project’s documentation [O31]
provides an overview of the public interface and examples showing how the data structure can be
used.

2.1.2 Operations

Algorithms involving a distributed multidimensional array may perform different operations on the
data structure. Common operations may be classified as follows:

• Local operations are the simplest type of operations that can be performed on eachMPI rank inde-
pendently of the other ranks. An example is the setValue member function of DistributedNDArray
which sets all elements of the array to a constant value.
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• Collective operations involve some kind of communication among all ranks in the MPI commu-
nicator. An example is the operator== function for the comparison between two instances of
DistributedNDArray, which involves a local operation (comparison of two local arrays) followed
by a collective AND-reduction of the local results among all ranks.

• Partially-collective operations involve communication not on the global communicator, but among
smaller groups of MPI ranks. It is often convenient to create MPI sub-communicators using
the MPI_Comm_split function (see Section 1.1.8) to simplify the communication pattern definition
in the program. For example, computing the sums of array elements per row involves the
communication only among ranks containing the same rows. Another example are stencil
computations on regular grids, which typically involve data exchange among neighboring ranks.

Additionally, complex algorithms may involve data exchange prior to performing the local operation
(such as the input vector re-distribution in the distributed matrix–vector multiplication). General
description of such algorithms is out of scope of this work. In the following subsection, we focus
on data exchange in stencil computations, which are common in numerical analysis.

2.1.3 Overlaps and data synchronization

Stencils in numerical analysis are geometric arrangements of nodes on a structured grid that express
which data is accessed from a grid node of interest and used in the numerical computation. The
application of stencils on the data stored in a non-distributed multidimensional array is straightforward
as all data is readily available in the memory of one rank. However, in a distributed configuration,
the multidimensional array needs to be extended with overlaps to facilitate access to data owned by
neighboring ranks, and data synchronization to exchange data in the overlapping regions of the array
when the stencil is applied iteratively.

Figure 2.2 shows a typical two-dimensional decomposition of a two-dimensional array into 9 subar-
rays with overlaps highlighted using dotted lines. Thewidth of the overlaps in the TNL implementation
is configurable separately for each dimension of the array. I.e., the overlaps can be described by
a multi-index overlaps where each component is non-negative and determines the number of data
elements along the corresponding axis shared between neighboring ranks. Each rank includes the
overlapping regions in its local array which is allocated larger, i.e., it spans the multidimensional
interval [localBegins− overlaps, localEnds + overlaps). Note that negative indices may be used to access
the local data in the overlapping region below localBegins and they are mapped properly to the one-
dimensional storage index. Also note that the array always includes the so called periodic overlaps in
the allocation, i.e., overlapping regions around the whole array. This allows to easily implement the
periodic boundary conditions in numerical schemes as it ensures that the stencil can be applied on all
local nodes.

The data synchronization for the overlaps in distributed multidimensional arrays in TNL is im-
plemented in the class TNL::Containers::DistributedNDArraySynchronizer. Before the algorithm can be
started, each MPI rank must configure the synchronizer:

• The rank IDs of the neighbors relevant for the stencil must be set. In the example shown in
Figure 2.2, rank 4 would set ranks 1, 3, 5, and 7 as its neighbors for the five-point stencil, and
ranks 0, 1, 2, 3, 5, 6, 7, and 8 for the nine-point stencil. Note that for simplicity, the rank numbering
in Figure 2.2 is structured, but the synchronizer supports an arbitrary unstructured numbering.

• The directions in which the data can be transferred must be set depending on the stencil. In the
simplest case, all values of the array can be transferred in all directions, but some applications
(such as the lattice Boltzmann method described in Chapter 5) may use separate arrays for
different synchronization directions (e.g., left-to-right or right-to-left).
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Rank 0 Rank 1 Rank 2

Rank 3 Rank 4 Rank 5

Rank 6 Rank 7 Rank 8

Figure 2.2: Typical two-dimensional decomposition of a two-dimensional array into 9 subarrays with
overlaps between neighbors (highlighted using dotted lines).

• The tags for MPI messages can be set to avoid conflicts when multiple arrays distributed among
the same ranks are synchronized at the same time.

The synchronization procedure consists of the steps summarized in Algorithm 1. Note that some
steps in the algorithmmay sometimes be unnecessary. For example, the allocated buffers can be reused
when the synchronizer is used repeatedly on arrays of the same size.

Algorithm 1 (Distributed multidimensional array synchronization)

1. Allocate all send and receive buffers.

2. Copy data from the local array to the send buffers.

3. Start MPI communications with all neighbors via MPI_Isend and MPI_Irecv.

4. Return a vector of MPI requests (the non-blocking procedure is suspended after this step).

5. Wait for all MPI requests to complete.

6. Copy data from the receive buffers to the local array.

The synchronization algorithm can be executed in several modes. The asynchronous or non-
blockingmode allows to interleave the synchronizationwith some other, unrelated work by suspending
the execution when all non-blocking MPI requests have been created and deferring the remaining
steps for later. Assuming that the MPI implementation can proceed with the communication in the
background, this approach can greatly improve the efficiency of the distributed algorithm. When
multiple arrays are to be synchronized at the same time among the ranks, it is also desirable to interleave
the individual steps of Algorithm 1 via pipelining for all arrays.

In general, to avoid a large number of small MPI requests, the data to be sent must be copied into
a contiguous buffer and the received data must be copied from a contiguous buffer into the local array.
On the other hand, if the data to be sent or received is already stored in a contiguous block of the
array, these copies are useless and therefore should be omitted. Such cases are automatically detected
in the DistributedNDArraySynchronizer class and buffers are replaced with views into the local array itself.
Hence, users may configure the layout of the array appropriately for the synchronization directions in
their application in order to improve the efficiency of the synchronization algorithm.
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2.2 Unstructured meshes

The content of this section is based on the paper [A110] that presents a data structure for conforming
unstructured homogeneous meshes implemented in the TNL library that was introduced in Section 1.3.
The initial implementation was designed by Vítězslav Žabka and later it was generalized and improved
by the author. Since the publication of the paper in the journal, we have extended the data structure for
polygonal and polyhedral meshes. The implementation of this extension in TNL was conducted by Ján
Bobot as part of his Master’s Degree project [B5] under the supervision of the author. The extensions
for polygonal and polyhedral meshes are incorporated into the text in this section.

The section is organized as follows. First, we introduce the topic of unstructured meshes and the
context of our work in Section 2.2.1 and review the basic terminology and mesh representations in
Sections 2.2.2 and 2.2.3. Then, in Section 2.2.4, we present the main ideas behind the implementation of
an efficient data structure for the representation of conforming unstructured meshes on CPU and GPU-
based systems. In Section 2.2.5, we describe the implementation details and Section 2.2.6 is dedicated to
the extension of the primary data structure for distributed meshes. Results of the benchmark problems
are presented in Sections 2.2.7 to 2.2.10.

2.2.1 Introduction

Meshes are fundamental data structures for many numerical methods applied to problems in natural
sciences, engineering, and other fields. In order to approximate problems with complex geometries
with sufficient accuracy, unstructured meshes often have to be considered instead of structured meshes.
Hence, an efficient way to generate, represent and manipulate an unstructured mesh in computer
memory is needed in order to facilitate highly performant computations of large problems. There are
many software tools and libraries which provide data structures and interfaces to represent and manip-
ulate unstructured meshes for scientific computations. Firstly, mesh generators such as CUBIT [M5],
Gmsh [A85], or MMG [A53], produce the resulting mesh from their internal representation in some
specific file format. On the other end of common scientific simulations workflow, post-processing
and visualization libraries, such as VTK [B27] or VCGlib [O5], interpret the data associated with a
mesh, which may be stored in different data formats than initially generated. The conversion between
various mesh file formats can be performed by many tools, including ParaView [B2], VisIt [B11], and
meshio [O28]. The widest range of approaches to the unstructured mesh representation is needed for
numerical simulation solvers that stand between mesh generators and visualization toolkits. Several
open-source C++ libraries, including OpenMesh [C12], ViennaGrid [M25], PUMI [A101], DUNE [A18,
A19], and MOAB [M28], provide generic data structures for the representation of unstructured meshes.
The latter two libraries are especially notable for following or defining a very general specification that
can be used as an interface between multiple compatible applications. Numerical simulation frame-
works, such as deal.II [A17], OpenFoam [C26], or libMesh [A109], provide data structures integrated
with other parts of the respective library.

Although the aforementioned libraries are very general in the sense that they facilitate code reuse
and are not bound to a specific application, each library has its distinct feature set. For example,
some libraries focus on adaptive mesh refinement of conforming simplex meshes, while others focus
on the handling of non-conforming and hierarchical meshes. From the performance point of view,
the development has focused on parallel computations on distributed memory systems and scaling to
thousands of nodes that are available on current supercomputers. Another important feature is the
support for efficient computations on the GPU accelerators which have already been used successfully
for numerical simulations on unstructured meshes [C9, A90, A148, A163, C42]. GMlib [O20] provides
unstructured mesh data structures for programmers using the OpenCL language, but in general, native
programming languages such as CUDA for NVIDIA GPUs are usually preferred in high-performance
computing due to higher flexibility and performance [C9]. However, most work has focused on the
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algorithmic aspects of GPU computing rather than providing a multi-purpose data structure and the
code of these works is not easily reusable, either because it is not open-source, or because it is too tightly
coupledwith a specific application. Another problem is that extending existing software for GPUswhile
preserving efficiency is practically impossible due to different memory layout requirements.

Hence, we believe that the mesh representation has to be revisited with respect to the hardware-
specific memory layout in order to design an efficient data structure for scientific computations on
unstructured meshes. In this section, we pursue the following goals:

1. to design a general multi-purpose data structure for representing conforming unstructured
meshes that can be used efficiently on a wide range of hardware architectures, including tra-
ditional multi-core CPUs, GPUs, and distributed CPU or GPU-based clusters,

2. to provide a flexible, comprehensible and reusable implementation of the data structure as an
open-source software, and

3. to demonstrate its efficiency on GPUs compared to sequential or parallel CPU implementations.

The meshes considered in [A110] are unstructured conforming homogeneous meshes as specified
in Definitions 1 to 3 in Section 2.2.2, which is a sufficiently general class for many applications.
Additionally, this thesis includes modifications of the data structure necessary to support a larger class
of conforming polygonal and polyhedral meshes (which are not homogeneous). We also describe an
extension of the base data structure for distributed meshes using the domain decomposition approach.
On the other hand, as a first step towards an efficient implementation, we disregard some features, such
as adaptive refinement, which might be challenging to implement efficiently on GPUs.

The proposed data structure can represent essentially arbitrary shapes or topologies of mesh entities,
including a general polygonal or polyhedral entity. Each topology is represented by its own type
in the C++ language. The library currently features definitions of the following topologies: vertex,
edge, triangle, quadrangle, tetrahedron, hexahedron, arbitrarily dimensional simplex, pyramid, wedge,
general polygon and general polyhedron. Furthermore, the data structure is highly configurable via
templates of the C++ language, allowing to avoid the storage of unnecessary dynamic data. Similarly
to [C42], the internal memory layout is based on state–of–the–art sparse matrix formats [C31, C32,
A143] for the storage of incidence matrices. This approach reduces complexity of the implementation
thanks to code reuse and allows us to select a sparse matrix format that is optimized for given hardware
architecture.

The efficiency of the implemented data structure is verified using several benchmark problems.
We developed two benchmark problems based on simple parallel algorithms to evaluate different
configurations of the data structure, to compare it with MOAB [M28], and to demonstrate the efficiency
of CUDA-based GPU parallelization compared to OpenMP-based CPU parallelization. Additionally, the
data structure has been successfully used as a fundamental building block in advanced numerical solvers
based on the method described in Chapter 4.

2.2.2 Terminology

In this section, we review the basic concepts related to unstructured meshes which will be used
throughout this thesis. For a mathematically rigorous definition of a mesh see, e.g., [A19] and the
references therein.

A mesh is a collection of geometric objects with a simple shape called mesh entities. For example,
a �-dimensional mesh can be a partitioning of a region in R� or a �-manifold in R# , such as the
partitioning of a polyhedral region into a set of tetrahedra which are composed of triangles, edges and
vertices. Non-vertex mesh entities are composed of other mesh entities which have lower dimension.
The lower-dimensional entities that frame an entity of higher dimension are called subentities of the
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Figure 2.3: An example of a mesh consisting of cells 21, 22, faces 51, 52, 53, 54, 55, and vertices E1, E2, E3,
E4.

entity and the higher-dimensional entity is called a superentity of the comprising entities. For example,
a triangle is composed of three vertices which are the 0-dimensional subentities of the triangle and the
triangle is a 2-dimensional superentity of these vertices. Note that in this description, vertices are the
only entities which hold their spatial coordinates inR# and other entities are realized by means of their
subvertices. This is advantageous for working with dynamic meshes, where the spatial coordinates may
change during the computation.

When we denote a mesh as M in the abstract language, it should be understood that M is a set of
all mesh entities which form the partitioning and all of their subentities, but concrete representations
of the mesh (e.g., in the computer memory or in a data file) are allowed to omit certain non-essential
entities. The �-dimensional entities of a �-dimensional mesh are called cells, the (� − 1)-dimensional
entities are called faces, the 1-dimensional entities are called edges and the 0-dimensional entities are
called vertices.

Mathematically, the relations between mesh entities of different dimensions can be represented by
an incidence matrix. Let E31 = {�1, . . . , �<} and E32 = {�1, . . . , �=} denote the sets of 31-dimensional
and 32-dimensional mesh entities, respectively. The entities �8 and � 9 are called incident, if �8 is a
subentity of � 9 (if 31 < 32) or �8 is a superentity of � 9 (if 31 > 32). The incidence matrix �31,32 of classes
E31 and E32 is an< × = binary matrix such, that [�31,32]8, 9 = 1 if and only if �8 and � 9 are incident. For
example, a simple mesh consisting of two triangles is shown in Figure 2.3 and its incidence matrices
are shown in Figure 2.4. It can be observed that �32,31 = �

)
31,32

.
Additional connectivity properties can be defined for unstructured meshes. For example, the dual

graph D can be used to describe the adjacency of cells in a mesh M. The vertices of D correspond to
the mesh cells E� ⊂ M and edges of the graph D represent links between adjacent (or neighboring)
mesh cells. An example of a small mesh and its dual graph is shown in Figure 2.5. The dual graph is
usually constructed such that two �-dimensional cells are adjacent, if and only if they have a common
(� −1)-dimensional face, i.e., they share at least � different subvertices. A more general definition that
can be used, e.g., in the METIS library [A107], is based on specifying the minimum number of common
subvertices =2><<>= , which two cells need to share to be considered adjacent. For example, specifying
=2><<>= = 1 leads to a dual graph where two cells are adjacent if they share at least one subvertex.

The dual graph has many interesting properties. For example, it can be shown that elements of the
matrix (� = ��,0�0,� are equal to the counts of common subvertices shared by each two cells. Then,
the binary matrix �� defined such that [�� ]8, 9 = 1 if and only if 8 ≠ 9 and [(� ]8, 9 ≥ =2><<>= is the
adjacency matrix of the dual graph with the parameter =2><<>= . See Figure 2.5 and also [C42, Appendix
A], for a similar example.

The next three definitions specify the type of meshes that will be dealt with in the following sections
of this thesis.

Definition 1 (conforming mesh). Let M be a mesh. If for all mesh entities �1, �2 ∈ M the intersection
of their closures �1 ∩ �2 is either an empty set or a mesh entity, then M is called a conforming mesh.
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Figure 2.4: Incidence matrices representing the relationships between entities in the mesh shown in
Figure 2.3.
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Figure 2.5: An example of a 2-dimensional mesh (blue vertices and edges), its dual graph with the
parameter =2><<>= = 2 (red vertices, red dashed edges), and its dual graph with the parameter
=2><<>= = 1 (red vertices, red dashed and pink dot-dashed edges). The matrix (2 = �2,0�0,2 shows
the counts of shared subvertices between each pair of the cells 21, . . . , 28.

Definition 1 implies that a conformingmesh does not contain so called hanging entities whichwould
be subentities of only one of the neighboring cells.

Definition 2 (unstructured mesh). A mesh is called an unstructured mesh, if each vertex of the mesh can
be a vertex of non-constant number of cells.

Definition 2 implies that the number of superentities of an entity in an unstructured mesh (i.e., the
number of neighboring entities of a higher dimension than the entity itself) is not a priori constant.
This is in contrast with the number of subentities of an entity which depends only on the shape of the
entity and not on the neighborhood of the entity.
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Definition 3 (homogeneous mesh). If all cells of a mesh have the same shape, then the mesh is said to
be weakly homogeneous. If all mesh entities of the same dimension have the same shape, then the mesh
is said to be (strongly) homogeneous.

Definitions 1 to 3 determine the class of meshes considered in the paper [A110]. In this section, we
extend the work to cover general polygonal, weakly homogeneous, and general polyhedral meshes.

2.2.3 Mesh representations

First, note that a weakly homogeneous mesh is not automatically strongly homogeneous. For example,
elements such as wedge and pyramid have both quadrilateral and triangular faces. However, wedge and
pyramidal meshes can be represented similarly to strongly homogeneous meshes by using a general
mesh entity topology, polygon, for the representation of faces. This approach combines the use of a
dynamic topology, where the number of subentities may vary for each polygon, with a static topology
for cells which all have the same shape and constant numbers of all subentities.

A �-dimensional mesh composed of cells with static topologies can be fully specified by supplying
a list of subvertices for each cell of the mesh. In case of a simplex mesh, the lists of subvertices can be
unordered and the relations between cells and its subvertices can be fully represented by the incidence
matrix ��,0. In case of a non-simplex mesh, the lists of subvertices have to be ordered and thus the
binary incidence matrix ��,0 represents only the connectivity, but not topological information. The
authors of [C42] define a non-binary mesh matrix which has the same pattern as the incidence matrix
and the non-zero entries specify local indices of the corresponding subentities. However, the local
ordering of subentities can be encoded in the representation of the corresponding binary incidence
matrix, avoiding the need to explicitly store the non-zero entries. When a sparse matrix format is used
for its representation, the non-zero entries in each row can be placed according to the local ordering
rather than the usual ordering given by the global subentity indices. Such an enhanced incidencematrix
��,0 fully represents the connectivity as well as topological information about the cells. The relations
between other mesh entities can be deduced from the incidence matrix ��,0 based on the topology of a
specific cell.

In contrast, general polyhedral meshes (with � = 3) do not have cells with a static topology. We
know that each cell is a polyhedron that may have any number of subvertices, but the topology does not
imply which vertices are connected with edges. A commonway to specify a polyhedron is by supplying
the list of its enclosing polygonal faces, which are themselves specified via ordered lists of subvertices.
In the framework described in this section, two incidence matrices are needed to represent a polyhedral
mesh: �3,2 to specify polyhedra in terms of their polygonal faces, and �2,0 to specify polygonal faces in
terms of their subvertices.

Note that each two-dimensional mesh consisting of cells with static topologies can be represented
as a polygonal mesh, and each three-dimensional mesh consisting of cells with static topologies can be
represented as a polyhedral mesh. The purpose of representing a homogeneous mesh using static entity
topologies is to allow the selection of algorithms optimized for a specific topology. Static topologies
allow to define conventions for local indexing of subentities, which can be used for algorithmic
optimizations that are not possible for a general polygonal or polyhedral mesh. For 3D meshes, the use
of static topologies, where possible, compared to the polyhedral representation is also more efficient in
terms of memory requirements or file size.

2.2.4 Design considerations

The data structure for the representation of a conforming unstructured mesh is intended to be used in
advanced numerical methods in high-performance computing applications and therefore it has to be as
efficient as possible. Unfortunately, it is practically impossible to design a single efficient representation
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suitable for all numerical schemes. Hence, compromises had to be made and this section summarizes
our design goals and techniques we found to achieve them.

This section covers only the important ideas behind the implementation of the Mesh class template
in the TNL library. The general design decisions related to parallel programming are described in
Section 1.3. The full public interface as well as examples showing how to use the data structure can be
found in the TNL project’s documentation [O31].

Static configuration

In accord with the programming paradigm used in TNL, we aim to satisfy the high configurability
requirement with static configuration, i.e. configuration which is supplied and resolved at compile-time.
An obvious disadvantage is that if a run-time selection of the configuration is needed, it is restricted to
a finite set of configurations which were explicitly instantiated at compile-time. The user configuration
is supplied as a template parameter to the main class template Mesh which will be described in the next
section.

The purpose of the configuration is to allow users to fine-tune the mesh representation for a specific
purpose by selecting only the necessary mesh features. A prime example is the elimination of mesh
entities and incidence matrices which are not accessed by the application. Another example is the
selection of internal data types for storing coordinates and indices, which can be used to further reduce
the memory requirements and consequently improve the efficiency of computation.

A complete example of the default configuration from which the user configuration can be easily
derived is given in Appendix A. The configuration allows to change the following parameters:

• The shape of cells which implies the shape of all other mesh entities. It is denoted as CellTopology
in Appendix A. Examples of built-in entity shapes are shown in Appendix B.

• Dimension# ≥ � of the space the mesh is embedded in. Note that# is denoted as SpaceDimension
in Appendix A and � is the dimension of the cells (denoted as meshDimension).

• Coordinate data type (e.g. float, double), global and local index types (e.g. int and short int). The
types are denoted as RealType, GlobalIndexType and LocalIndexType in Appendix A.

• Pairs of dimensions31, 32, where31 > 32, for which31-dimensional entities store the links to their
32-dimensional subentities. Each entity stored in the mesh must store the links to its subvertices
which provide their geometric realization. See the function subentityStorage in Appendix A.

• Pairs of dimensions31, 32, where31 < 32, for which31-dimensional entities store the links to their
neighboring 32-dimensional superentities. See the function superentityStorage in Appendix A.

• Dimensions of entities for which the interior/boundary tags are stored. See the function
boundaryTagsStorage in Appendix A.

• Storage of the dual graph and its parameter =2><<>= . See the function dualGraphStorage and the
attribute dualGraphMinCommonVertices in Appendix A.

Internal data structures

An important design choice concerns the internal data structures used for the storage of non-temporary
data. As explained in Section 2.2.2, the entire mesh topology can be expressed using incidence matrices
which can be stored in (binary) sparse matrix formats. Similarly, the dual graph can be represented
by its adjacency matrix �� which can also be stored in a sparse matrix format. Additional data, such
as vertex coordinates and entity tags, can be stored in plain arrays indexed by the appropriate mesh
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entity indices. The use of arrays and suitable sparse matrix formats not only reduces complexity of the
implementation, but also provides performance benefits compared to object-oriented representation of
mesh entities, because random accesses to the data elements can be cached efficiently and the coalesced
memory access pattern [M19] can be utilized on GPUs. On the other hand, an implementation of
operations such as inserting new entities into an existing mesh representation would be complex and
it could cause performance degradation due to reallocation of the arrays and sparse matrices. Such
operations are therefore not supported.

Note that mesh entities themselves do not have to be stored explicitly in computer memory. Instead,
they can be instantiated on demand based on the entity dimension and index, since all topological
information as well as additional data such as vertex coordinates can be fetched from the global mesh
object’s internal data structures. In our implementation, MeshEntity is a generic class template for a 3-
dimensional mesh entity, which comprises just a pointer to the global mesh and an entity index, while
the entity dimension 3 is encoded in the class template parameters. Various member functions supply
the dimension and index of the entity when accessing global data structures via the mesh pointer.

The incidence matrices representing the connectivity between mesh entities are usually sparse,
so we consider sparse matrix formats to organize the data in memory. Since the incidence matrix is a
binarymatrix, the conventional formats aremodified by omitting the storage for the values of thematrix
elements and storing only the column indices of non-zero elements. As explained in Section 2.2.3, the
non-zero entries of the incidencematrix are ordered according to local indices rather than global indices.

A comprehensive evaluation of many sparse matrix storage formats has been recently presented in
[A119]. We have considered the following commonly used formats for the incidence matrices used in
the mesh:

1. The Compressed Sparse Row (CSR) format [C13, B26] is easy to implement and it does not have
any overhead due to padding. The step size between two consecutive elements in the same row
is always 1.

2. The Ellpack format [M12, B26] adds padding zeros at the end of all rows shorter than the longest
row to obtain a two-dimensional arraywhich can be stored either in the row-major or the column-
major orientation. Hence, the step size between two consecutive elements in the same row is
either 1 or <, where < is the number of matrix rows. The overhead due to padding can be
considerable if there are a few very long rows. The row-major or column-major orientation can
be chosen depending on the hardware architecture. For example, the column-major orientation is
advantageous for GPUs due to higher memory throughput of the coalesced access pattern [M19]
compared to the strided pattern implied by the row-major orientation.

3. The Sliced Ellpack format [C31, A143] is a block modification of the Ellpack format. The storage
arrays are split into blocks containing a constant number of rows stored in the column-major (or
row-major) orientation. This provides a compile-time constant step size between the consecutive
elements in a row and the column-major variant still allows coalesced accesses assuming that
the block size is a multiple of the CUDA warp size which is 32 on current hardware [M19].
Furthermore, it is not necessary to add padding entries to align with the globally longest rows,
but the longest row in each block can be considered to reduce memory overhead.

The most important criteria for our implementation are storage overhead and the coalesced access
pattern for GPUs. Therefore, we use sparse matrices based on the Sliced Ellpack format with row-
major orientation for CPU computations and column-major orientation for GPU computations.

The aforementioned sparse matrix formats do not explicitly store the number of non-zero elements
per row because it is not necessary in common algorithms such as the matrix–vector multiplication.
However, mesh algorithms might require a direct knowledge of the number of subentities or superen-
tities of a given entity. Therefore, each incidence matrix �31,32 and the adjacency matrix �� of the dual
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graph must be explicitly supplemented by an array storing the numbers of non-zero elements per row,
unless the values can be determined a priori without additional storage. Recall that for an incidence
matrix �3,31 , 3 > 31, the elements stored in the 9-th row correspond to the 31-dimensional subentities
of the 9-th 3-dimensional entity. If the 3-dimensional entities have a static topology (e.g., a quadrangle
or a simplex), the number of 31-dimensional subentities (for any 31 < 3) is known a priori and can be
provided as a compile-time constant, so the additional array for the numbers of non-zero elements per
row is not necessary.

Internal storage layers

The data structure needs to contain several matrices and arrays for the mesh representation depending
on the configuration. The internal data structures can be organized in several layers for each dimension
of entities in the mesh. Individual storage layers can be combined using C++ features such as recursive
inheritance and partial class template specializations in order to provide an efficient and generic �-
dimensional data structure. Recursive inheritance is a C++ design pattern in which an instance of a
class template inherits from another instance of the same class template but with different template
arguments. Hence, in this case inheritance is not used to express a relationship between objects, but to
generically include any finite number of differently typed attributes into a single object.

The exact hierarchy of class templates comprising the Mesh class template is quite complicated
and technical. A brief description of the main layers in the hierarchy is included in Appendix C,
which is based on the paper [A110]. An in-depth explanation and additional comments related to
the implementation of the storage layers can be found in the thesis [B5].

Mapping user data to mesh entities

The mesh data structure is designed primarily for computational algorithms such as finite element or
finite volume methods. An important part of computing on meshes is defining a mapping between user
data and mesh entities. Unlike some other libraries such as OpenMesh [C12] where arbitrary user data
can be stored directly in the mesh object, the data structure presented in this paper does not address
the problem of mapping user data to the mesh. Mesh entities can be identified by their C++ type (i.e.,
topology) and global index, and adjacent entities are accessible using local indices. This information
can be used to define a natural mapping between the mesh entities and an appropriate data container
storing user data separately from the mesh. Depending on the specific application, a suitable container
might be e.g. a (one-dimensional) array, a multi-dimensional array, an array of structures or a structure
of arrays. As described in Section 1.3, TNL provides implementations of one-dimensional and general
multi-dimensional arrays (Array and NDArray) including full GPU support. The storage layout of the
latter is configurable by a permutation of indices, which allows to easily switch the memory layout (see
Section 2.1 for details).

Orientations of mesh entities

For computational algorithms such as finite element or finite volume methods, it is often necessary
to define orientations of mesh entities. Unfortunately, the term orientation is commonly used in two
different contexts:

1. In case of the finite volume method, one is interested in the direction of the normal vectors
uniquely assigned to each face of the mesh. Each face can have up to two adjacent cells and
its normal vector can be oriented in two ways: either outward or inward with respect to the
first adjacent cell (i.e., inward or outward, respectively, with respect to the other cell). This
information is also sufficient for some low-order finite element discretizations, e.g. the lowest
order Raviart–Thomas elements that we used in [A72].
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The orientation of faces based on this context is stored implicitly in the presented data structure.
Although it does not explicitly store the normal vectors for each face, their direction can be
deduced based on the topology of the face and one of its adjacent cells. The core implementation
detail is that column indices in each row of the incidence matrices are not sorted. Thus, for each
mesh entity, we can define local indices of its subentities and superentities corresponding to the
positions in the rows related to the entity. For example, the incidence matrix ��−1,� contains one
or two entries per row which correspond to the cells adjacent to the face given by the particular
row index. The first entry is assigned a local index 0 and its column index corresponds to the so
called owner cell of the face, whereas the second entry (if it exists) is assigned a local index 1 and
its column index is related to the so called neighbor cell of the face. The orientation of the face
can be inferred from the topology of its owner cell (see Appendix B), because the owner cell is
the one from which the face was initialized.
When appropriate, the orientation of faces needs to be extractedmanually from the data structure
using a suitable algorithm such as the following. For example, given a cell denoted by index  
and its adjacent face denoted by index � , we are interested in whether the cell  is the owner
or neighbor cell of the face � . First, we can use the templated function getSuperentitiesCount to
obtain the number of cells adjacent to the face � . If we get one, it must be the cell  which
is also the owner cell. Otherwise, we can pass the local index 0 to the templated function
getSuperentityIndex to obtain the global index  0 of the face’s owner cell that can be compared
to the index  . If  equals  0, then  is the owner cell, otherwise it is the neighbor cell and the
orientation of � needs to be determined based on  0.

2. For high-order finite element methods, it is often necessary to define local coordinate systems on
each cell such that degrees of freedom associated to faces and edges shared by adjacent cells can
be located consistently when the face or edge is viewed from each of the adjacent cells. In this
context, orientation of the entities relates to the local ordering of their subvertices with respect
to their adjacent cells. This case is more general than the former since entities other than faces
are considered (e.g. edges in 3D) and even the direction of normal vectors on faces can be based
on consistent local ordering of face subvertices.
However, the current implementation of the presented data structure does not provide any way
to deal with general mesh entity orientations according to this context. Hence, implementing
computational methods that need this information, such as high-order finite element methods,
might require using additional data structures to store the necessary mesh entity orientations,
or following a different approach that would avoid the need for additional storage. Various
strategies on dealing with this general case can be found in [A1].

2.2.5 Implementation details

In this section, we describe additional implementation details related to mesh initialization, input from
files and reordering of the mesh entities, which is a common optimization to improve data locality. The
high-level documentation for programmers, including code examples, can be found in the TNL project’s
documentation [O31] in the section related to unstructured meshes.

Mesh initialization

Each mesh object, i.e., instance of the Mesh<Config, Device> type, has to be initialized prior to its
first use. The former class template parameter, Config, refers to a specific configuration class (see
Subsection “Static configuration” on Page 33) and the latter class template parameter, Device, denotes
the device in which memory space the mesh will be allocated (see Section 1.3.2). In our implementation,
the initialization process is sequential and done entirely on the CPU and then, the complete mesh can
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be transferred to the GPU using an overloaded assignment operator. The initialization is done via a
public member function init of the Mesh class template, which is usable only when TNL::Devices::Host

is specified as the class template parameter Device.
The member function init takes three arguments: points, faceSeeds, and cellSeeds, which have the

following meaning:

1. The points argument is an array of PointType objects. The 8-th object in the array represents
Cartesian coordinates of the 8-th vertex in the Euclidean space.

2. The faceSeeds argument is used only for the initialization of polyhedral meshes, otherwise it is
specified as an empty object. It is an instance of the FaceSeedMatrix type which comprises the
incidence matrix �2,0 (i.e., it represents subvertex indices of polygonal faces).

3. The cellSeeds argument is an instance of the CellSeedMatrix type and its meaning depends on
whether a polyhedral or non-polyhedral mesh is being initialized. For a polyhedral mesh, it
comprises the incidence matrix �3,2 (i.e., it represents indices of polygonal faces of each polyhe-
dron). On the other hand, cells of a non-polyhedral mesh can be defined directly in terms of their
subvertices, so the cellSeeds argument comprises the incidence matrix ��,0 in this case.

Note that the vertex indices in each row of the input incidence matrices �2,0 and ��,0 must follow
a specific order based on the topology of the entity (see Appendix B). The remaining uninitialized
incidence matrices are deduced from the specific ordering of vertex indices in the input incidence
matrices.

The initialization procedure for a�-dimensional non-polyhedral mesh is carried out in the following
phases. First, the physical coordinates of vertices are moved from the input points array into the mesh.
Next, the cellSeeds argument initializes the incidence matrix ��,0 and its transpose �0,� in the mesh.
Then, for all 3 = � − 1, � − 2, . . . , 1, the following steps are repeated:

1. Create intermediate seeds for the 3-dimensional entities and store them in an intermediate
indexed set container represented by std::unordered_map<Seed, Index> in our implementation.
Note that to determine if two seeds represent the same entity, the subvertex indicesmust be sorted
first, but most of the comparisons can be avoided by hashing. In order to avoid the sorting of
subvertices, the hashes of the subvertex indices must be combined with a commutative operation
(e.g., integer addition).

2. Initialize the incidence matrix �3,0 (i.e., links from 3-dimensional entities to their subvertices) and
its transpose �0,3 (i.e., links from vertices to the 3-dimensional entities).

3. For all B = 3 + 1, 3 + 2, . . . , � , initialize the incidence matrix �B,3 (i.e., links from B-dimensional
entities to their 3-dimensional subentities) and its transpose �3,B (i.e., links from 3-dimensional
entities to their B-dimensional superentities).

4. Deallocate all intermediate data structures.

Finally, supplementary data members such as the dual graph or boundary entity tags are initialized.
Note that if some matrices are disabled in the mesh configuration, the relevant initialization steps are
omitted to reduce the memory and computational cost of the initialization.

The initialization procedure for a 3-dimensional polyhedral mesh is slightly different. First, the
faceSeeds argument is used to initialize a wireframe of the mesh using the aforementioned procedure,
where the incidence matrix �2,0 is used as input instead of the ��,0 matrix. Then, the cellSeeds argument
initializes the incidence matrix �3,2 and its transpose �2,3. Finally, the remaining incidence matrices �3,1,
�1,3, �3,2, �2,3, �3,0, and �0,3 are initialized, unless disabled in the mesh configuration.
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The initialization process results either in a system error or in a populated mesh object containing
all matrices and other attributes as specified in the mesh configuration. The correctness of the mesh
representation depends on the input data in a sense that topological properties of the mesh entities are
not checked by the initializer itself. For convenience, an intermediate class template called MeshBuilder

with basic input data validation and text file readers for common formats are provided as well.

Input from files

In practice, scientific solvers usually initialize a mesh by reading an input file prepared by another
specialized tool. The TNL library currently provides facilities for input as well as output in the legacy
VTK, VTU, Netgen, and FPMA file formats. The parallel format PVTU is also supported for distributed
meshes which will be described in Section 2.2.6.

The process of importing a mesh from a file into a Mesh object is divided into three phases. First,
the features of the mesh are determined by examining the file. Next, the appropriate type template
arguments of the Mesh class template are resolved at run-time. Finally, the mesh representation is
imported from the file into a mesh object of the appropriate type.

The (compile-time) type of a mesh in a particular file can be resolved using a variadic class template
called MeshTypeResolver from the TNL library. MeshTypeResolver performs the selection of template
arguments for the default mesh configuration class template at run-time similarly to [C28]. The
implementation of MeshTypeResolver is rather complicated, but its usage can be summarized with the
following pseudo-code:

1 using Reader = [based on file type detection]
2 Reader reader(input_file);
3 using MeshType = [resolved by MeshTypeResolver from the reader]
4 MeshType mesh = reader.readMesh();
5 return functor(reader, mesh);

The user-supplied functor object is typically a C++ lambda expression which continues the computation
with a fully initialized mesh.

Reordering of entities

The sparse matrix formats described in Subsection “Internal data structures” on Page 33 provide an
efficient access to the subentity and superentity indices of a mesh entity, but the efficiency does not
propagate to the access to other entities using the obtained indices. For example, if we access the
incidence matrix �2,1 to obtain the indices of edges incident to a two-dimensional mesh entity, and then
use the obtained indices to query the incidence matrix �1,0 to obtain the indices of edge subvertices, the
efficiency of accessing the latter incidence matrix cannot be guaranteed and depends on the locality
of obtained edge indices. A common optimization strategy for similar scenarios is to improve data
locality by applying a suitable reordering algorithm [A163]. Common approaches typically involve an
in-order traversal of a quadtree or octree which considers the geometric locality of mesh entities, or an
application of a suitable space-filling curve such as the Hilbert curve [A98], or a graph ordering such as
the Cuthill–McKee algorithm [C17] which is known to reduce the bandwidth of the graph’s adjacency
matrix, or a graph colouring technique such as [A90].

The Mesh class template provides an interface for applying any custom ordering of mesh entities.
The 3-dimensional entities of a mesh can be reordered by calling the templated member function
reorderEntities and specifying 3 as the template parameter:
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1 template< int Dimension >
2 void reorderEntities( const GlobalIndexVector& perm, const GlobalIndexVector& iperm );

The GlobalIndexVector type stands for a vector of GlobalIndex elements allocated on the same device as
the mesh. The vectors perm and iperm represent two mutually inverse permutations of indices from 0 to
#3 −1, where #3 is the number of 3-dimensional entities in the mesh. The reordering is done according
to the definition used in the METIS library [A107]. Let M be the original mesh and M′ the permuted
mesh. Then, the entity with an index 8 in M′ is the entity with an index perm[ 8 ] in M and the entity
with an index 9 in M is the entity with an index iperm[ 9 ] in M′.

The reordering is performed by applying the permutations to all relevant incidence matrices and
arrays. First, perm is used to permute the rows of all incidence matrices �3,3 ′ , where 3 ′ ≠ 3 stands for
the dimension of subentities or superentities of 3-dimensional entities. Next, iperm is used to permute
the columns of all incidence matrices �3 ′,3 , where 3 ′ ≠ 3 has the same meaning. Both perm and iperm

are also applied the same way to permute the dual graph �3,3 . Finally, perm is used to permute data
stored in plain arrays (e.g., vertex coordinates if 3 = 0) and extra properties such as boundary tags are
re-initialized.

2.2.6 Distributed mesh

In this section, we describe an extension of the base data structure which allows to perform distributed
computations on an unstructured conforming homogeneous mesh.

Distributed mesh generation

The obvious requirement for distributed computations on unstructured meshes is the generation
of a distributed mesh, which is typically performed by partitioning an existing mesh into several
subdomains following the domain decomposition approach. When the mesh is decomposed and the
program is executed via MPI [M15], each subdomain can be assigned to a different MPI rank to provide
parallelism to the computation.

The TNL library provides the tool tnl-decompose-mesh which performs the partitioning using the
METIS library [A107]. Similarly to the decomposePar tool from the OpenFOAM framework [M9],
tnl-decompose-mesh is run sequentially as a separate process before the main computation. It reads
an input mesh representation from a file in the VTK, VTU, Netgen, or FPMA format, and writes the
decomposed mesh into the parallel format PVTU which comprises several files per each subdomain.

In addition to mesh partitioning, tnl-decompose-mesh takes care of several features that are needed
for our distributed mesh data structure. Firstly, it assigns global indices for vertices and cells such that
the owner of each entity can be easily identified even for common entities on the interfaces between
subdomains. Global indices are assigned separately in each dimension in such a way that for each
two ranks 8 and 9 , 8 < 9 , all 3-dimensional entities owned by rank 8 have a smaller global index than
any 3-dimensional entity owned by rank 9 . Next, it can generate overlaps (also called ghost regions)
across subdomains. This results in several layers of vertices and cells close to the subdomain boundary
being added to the local mesh (i.e., the mesh representing space discretization of the given subdomain)
from other subdomains. This is needed for communication patterns between MPI ranks where data
associated with mesh entities need to be exchanged. Finally, an appropriate renumbering of mesh
entities on each subdomain is generated. In each dimension, mesh entities are ordered such that entities
owned by the current MPI rank are numbered first, followed by the ghost entities owned by the first
neighbor, then ghost entities owned by the second neighbor, and so on. This ordering simplifies the
implementation and increases the efficiency of data synchronization on ghost regions, which will be
described later.
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Distributed mesh implementation

Since the distributed mesh stored in a PVTU file contains additional data compared to the original mesh
(e.g., global entity indices), a supplementary data structure, where the PVTU file can be loaded, needs to
be provided. The TNL library provides the DistributedMesh<typename Mesh> class template that contains
the following parts:

• The local mesh of type Mesh representing a specific subdomain.

• The number of ghost region levels, stored as an integer (int).

• Arrays of global indices for each entity in the local mesh. In case of vertices and cells, these
arrays are read from the PVTU file. For other dimensions they have to be generated if needed.

• Arrays of vertex and cell types (vtkGhostType) which are needed for data output in VTK file
formats.

The local mesh contains all entities owned by the MPI rank which was assigned the corresponding
subdomain, as well as ghost entities that are owned by other ranks. The type of each entity can be
obtained by querying the array of entity tags (see Subsection “Internal storage layers” on Page 35).
Specifically, each entity is either local or ghost, and from the geometric point of view, each entity is
either internal or boundary.

Data synchronization on ghost regions

Computations following the domain decomposition approach typically involve synchronization to
ensure data consistency on ghost regions. This is done by sending data computed by an MPI rank on its
subdomain to the ghost regions of its neighbors, and from the opposite side, receiving data computed
by neighbors into the ghost regions around the subdomain.

The data synchronization process is implemented in the DistributedMeshSynchronizer class template
as a separate data structure that can be instantiated for a specific distributed mesh and dimension 3
of entities being synchronized. The synchronizer can be used to synchronize data arrays allocated
anywhere, i.e., host–to–host, host–to–GPU, as well as GPU–to–GPU communication is supported.
Note that thanks to the so-called CUDA-aware MPI [O18], we do not have to deal with handling custom
buffers when receiving or sending data allocated on the GPU.

The synchronizer needs to be initialized before its use. Let % denote the number ofMPI ranks among
which the mesh is distributed. Then the initialization phase involves the following steps:

1. An unsymmetric % × % communication matrix� is created such that�8, 9 represents the number
of 3-dimensional ghost entities on rank 8 that are owned by rank 9 .

2. Each rank collects the indices of the first entity owned by each neighbor and stores them in an
array of size % .

3. Each rank collects the indices of local entities, which are ghosts on a different subdomain. This
can be represented by a binary sparse matrix with % rows.

During synchronization, each pair of ranks exchanges data according to the communication matrix.
The data to be sent may be non-contiguous, so they have to be copied into a contiguous buffer prior
to the transfer. On the other hand, the data to be received are contiguous thanks to the appropriate
numbering of mesh entities performed by tnl-decompose-mesh, so buffering is not necessary in this case.

The aforementioned initialization process is sufficient for synchronizing data associated to entities
that have their global indices assigned already in the PVTU file (i.e., vertices, cells, and also faces
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in polyhedral meshes). On the other hand, remaining entities that do not exist in an input file (e.g.,
edges, or faces in non-polyhedral meshes) do not have global indices assigned yet. In this case, the
remaining entities have to be initialized at run-time via MPI before the synchronizer can be used for
these entities. The algorithm starts by each MPI rank determining and counting all local uninitialized
entities, exchanging the counts with other MPI ranks, and assigning a global index to all local entities.
All remaining entitieswhose global index could not be determined in the first phase are located either on
the interface between subdomains or in the ghost region, and their global index must be received from
the rank which owns the entity. It can be observed that the uninitialized entities can be unambiguously
identified by their subvertices, which already have global indices assigned. Hence, neighboring ranks
exchange the tuples of global subvertex indices, identify the requested entities in their local mesh and
send back global indices to the neighbors. Finally, each rank reorders the newly initialized entities on
its local mesh based on the global indices.

2.2.7 Benchmarking methodology

We used several benchmark problems to evaluate the data structure for the representation of un-
structured meshes. In this subsection, we describe the methodology related to the execution of the
benchmark problems and evaluation of the results.

All computations presented in this section were performed either on the 12-core CPU Intel Gold
6146 or on the GPUNVIDIA Tesla V100, whose characteristic properties are listed in Table 2.1. The code
for the CPU was compiled with the g++ compiler version 10.2.0 and the code for the GPU was compiled
with the nvcc compiler version 11.1.105. Common flags for both compilers were -std=c++14 -O3. Ad-
ditional optimization flags for the CPU code were -march=native -mtune=native, link-time optimizations
were enabled with -flto, and OpenMP support was enabled with -fopenmp. Additional compiler flags for
nvcc were --expt-relaxed-constexpr --expt-extended-lambda and the GPU architecture was set to sm_70.

We compared computational times �) for sequential (single-core) computations on the CPU,
parallel multi-core computations on the CPU using OpenMP [A51], and parallel computations on one
GPU accelerator using CUDA [M19] parallelization. Note that the distributed mesh is not tested in this
section. To obtain statistically significant results, the computational time was taken as the average of
100 iterations of each computation. The secondary quantity of interest for the comparison of sequential
computations and parallel computations using ℓ CPU cores is the speed-up (?ℓ , which is defined as the
ratio between computational times using 1 and ℓ cores. For computations on the GPU, the quantity
of interest is the GPU speed-up �(?ℓ defined as the ratio between the computational times on CPU
using ℓ cores and GPU. To compare the results with the hardware peak memory throughput, we also
calculate an effective bandwidth ��, for each algorithm. The ��, is calculated by dividing the useful
data size, which is problem-specific and specified later, by the achieved computational time.

Table 2.1: Hardware used for the computation of benchmarks [O14, M22]. The cluster is operated by
the Research Center for Informatics (http://rci.cvut.cz/).

CPU GPU

Model Intel Xeon Gold 6146 NVIDIA Tesla V100
Cores 12 5120
Core frequency 3.2-4.2 GHz 1.455 GHz
L2 cache size 12 × 1 MiB 6 MiB
L3 cache size 24.75 MiB —
Amount of memory 384 GiB 32 GiB
Peak memory throughput 6 × 21 GB/s 900 GB/s
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Table 2.2: Properties of the triangular (2D4
] ) and tetrahedral (3D4

] ) meshes used in the benchmarks:
mesh size ℎ (radius of the largest sphere circumscribed around a cell), number of vertices #V , number
of faces #F , and number of cells #C.

Id. ℎ [m] #V #F #C
2D4

1 6.71 × 10−2 142 383 242
2D4

2 3.49 × 10−2 513 1456 944
2D4

3 1.64 × 10−2 1938 5651 3714
2D4

4 8.73 × 10−3 7555 22342 14788
2D4

5 4.23 × 10−3 29989 89324 59336
3D4

1 2.13 × 10−1 395 2937 1312
3D4

2 1.27 × 10−1 824 7773 3697
3D4

3 6.29 × 10−2 5740 60839 29673
3D4

4 3.48 × 10−2 43293 486875 240372
3D4

5 1.84 × 10−2 336608 3903609 1939413

Table 2.3: Properties of the polygonal (2D∗
] ) and polyhedral (3D∗

] ) meshes used in the benchmarks:
number of vertices #V , number of faces #F , number of cells #C, average number of subvertices per
cell #VC, average number of vertices per face #VF , and average number of faces per cell #FC.

Id. #V #F #C #VC #VF #FC
2D∗

1 322 463 142 6.0 2.0 6.0
2D∗

2 1104 1616 513 6.0 2.0 6.0
2D∗

3 4034 5971 1938 6.0 2.0 6.0
2D∗

4 15428 22982 7555 6.0 2.0 6.0
2D∗

5 60616 90604 29989 6.0 2.0 6.0
3D∗

1 2018 2410 395 18.4 5.0 11.2
3D∗

2 4535 5356 824 20.9 5.1 12.4
3D∗

3 32811 38548 5740 22.3 5.1 13.1
3D∗

4 252930 296220 43293 23.1 5.1 13.5
3D∗

5 1989563 2326168 336608 23.5 5.1 13.7

The benchmarks presented in the following subsections were performed on a 2D or 3D computa-
tional domain consisting of a unit square or cube, respectively. The first computations were performed
on series of 2D and 3D triangulations of the computational domain with properties summarized in
Table 2.2. The triangular meshes were generated using the frontal algorithm in Gmsh [A85] and
reordered using the reverse Cuthill–McKee algorithm [C17] to improve data locality. The tetrahedral
meshes were generated by the COMSOL Multiphysics software [M8]. Additionally, polygonal and
polyhedralmesheswere created from the aforementioned triangular and tetrahedral meshes by creating
a dual mesh from the input simplex mesh using the CinoLib [B23] library. The duality means that cells
of the dual mesh correspond to vertices of the primal mesh and vertices of the dual mesh correspond
to cells of the primal mesh. The properties of the dual meshes are summarized in Table 2.3.

2.2.8 Benchmark problems: algorithms and implementation

We developed two benchmark problems to compare the efficiency of the data structure under different
configurations and against MOAB [M28]. The first benchmark is the calculation of the measures of
each cell in the mesh, which involves launching as many independent parallel tasks as there are cells
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in the mesh, calculating the measure of one cell per task, and writing the result into a global array.
The calculation of the cell measure involves reading the subvertices of the cell and using their spatial
coordinates in the formula for the cell measure. For example, the computational kernel for triangular
meshes can be implemented using an extended lambda expression [M19] as follows:

1 auto kernel_measures = [] __host__ __device__
2 ( GlobalIndex cell_idx, const Mesh& mesh, Real* output_array )
3 {
4 const auto& cell = mesh.template getEntity< 2 >( cell_idx );
5 const auto& v0 = mesh.getPoint( cell.template getSubentityIndex< 0 >( 0 ) );
6 const auto& v1 = mesh.getPoint( cell.template getSubentityIndex< 0 >( 1 ) );
7 const auto& v2 = mesh.getPoint( cell.template getSubentityIndex< 0 >( 2 ) );
8 output_array[ cell_idx ] = getTriangleArea( v2 - v0, v1 - v0 );
9 };

Note that the lambda expression kernel_measures is passed to the TNL’s ParallelFor function which
executes it in parallel on the specified device.

The second benchmark is the calculation of the measure of the boundary on each cell in the mesh.
Unlike the first benchmark, the independent parallel tasks are executed per face and the calculation
involves the calculation of the face measure (i.e., length or area depending on the mesh dimension),
reading indices of the cells incident to the face, and adding the face measure into the output array. Since
there might be multiple parallel tasks writing their value to the same element of the output array at the
same time, the addition must be performed atomically. The computational kernel can be implemented
as follows:

1 auto kernel_boundary_measures = [] __host__ __device__
2 ( GlobalIndex face_idx, const Mesh& mesh, Real* output_array )
3 {
4 constexpr int D = Mesh::getMeshDimension();
5 const auto& face = mesh.template getEntity< D - 1 >( face_idx );
6 const auto face_measure = getEntityMeasure( mesh, face );
7 const auto cells_count = face.template getSuperentitiesCount< D >();
8 for( LocalIndex c = 0; c < cells_count; c++ ) {
9 const auto cell_idx = face.template getSuperentityIndex< D >( c );

10 TNL::Algorithms::AtomicOperations< Device >::add( output_array[ cell_idx ], face_measure );
11 }
12 };

The lambda expression kernel_boundary_measures is again passed to the TNL’s ParallelFor functionwhich
executes it in parallel on the specified device. The function getEntityMeasure used at line 6 calculates
the measure of the given entity in the given mesh, similarly to the explicit calculation for triangles in
the previous kernel.

Note that the second benchmark presented in this section is different from the second benchmark
used in the paper [A110]. The latter computes the boundary measure of a patch of cells around a
vertex in the mesh and its efficient implementation relies on the local indexing convention for the
opposite vertices and faces in simplex meshes. While the algorithm can be generalized for polygonal
and polyhedral meshes, it would necessarily have a very low arithmetic intensity, because the number
of arithmetic computations would be the same, but the amount of mesh data needed to be read would
be significantly higher on polygonal and especially polyhedral meshes. For this reason, we used the
aforementioned algorithm computing the boundary measures of each cell in the mesh, which has
similar computational characteristics on all mesh types and on simplex meshes it is even comparable
to the second benchmark presented in [A110].

To compare the data structure implemented in TNLwith another library, we also implemented these
two benchmarks using MOAB [M28]. However, there are some inevitable differences. All meshes in
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MOAB are implicitly 3D, so there is no way to check if a triangle or a general polygon comes from a
2D or 3D space, other than checking the third component of vertex coordinates. The area of a triangle
in 2D can be calculated using a 2 × 2 determinant, but formulas for the calculation of a triangle area in
3D involve the expensive square-root function. Similarly, the area of a polygon in 2D can be calculated
using the surveyor’s formula [A33] (also known as the shoelace formula), but the algorithm for the
calculation of a polygon area in 3D is more complicated [B29]. In order to match the benchmark using
the TNL data structure, we had to explicitly invoke the functions based on the specific 2D formulas in
the first benchmark involving triangular and polygonal meshes in 2D. In the second benchmark, we
used the general formulas for the calculation of areas of triangles and polygons in 3D.

The code of all benchmarks described in this subsection is available as open-source software in the
following projects:

• https://gitlab.com/tnl-project/tnl-benchmark-mesh (the TNL implementation),

• https://gitlab.com/tnl-project/moab-benchmark (the MOAB implementation).

To compare the results with the hardware peak memory throughput, we calculate an effective
bandwidth ��, for each algorithm. The ��, is calculated by dividing the useful data size for the
given computation by the achieved computational time. For both benchmark algorithms, the useful
data size consists of the size of all vertex coordinates, the size of all indices read by the algorithm,
and the size of output data written by the algorithm to the memory. Note that this is a more accurate
approach compared to [A110] where the output data size is not considered in ��, calculations. The
number of write operations equals #C in the first benchmark and approximately 2 · #F in the second
benchmark. The number of indices read by each algorithm depends on the mesh type.

In the first benchmark, the data size for simplex meshes is given by

data size41 = sizeof(Real) · (� #V + #C) + sizeof(GlobalIndex) · (� + 1) · #C,

the data size for polygonal meshes is given by

data size∗1 = sizeof(Real) · (� #V + #C) + sizeof(GlobalIndex) · #VC · #C
+ sizeof(LocalIndex) · #C,

and the data size for polyhedral meshes is given by

data size∗∗1 = sizeof(Real) · (� #V + #C) + sizeof(GlobalIndex) · (#FC · #C + #VF · #F )
+ sizeof(LocalIndex) · (#F + #C),

where the function sizeof returns the size of the given type in bytes, � stands for the mesh dimension,
and the counts of entities #V , #F , #C and the average counts of subentities #FC, #VC, #VF are
given in Tables 2.2 and 2.3.

In the second benchmark, the data size for simplex and polygonal meshes is given by

data size42 = data size∗2 = sizeof(Real) · (� #V + 2 #F ) + sizeof(GlobalIndex) · � · #F
+ (2 sizeof(GlobalIndex) + sizeof(LocalIndex)) · #F ,

and the data size for polyhedral meshes is given by

data size∗∗2 = sizeof(Real) · (� #V + 2 #F ) + sizeof(GlobalIndex) · #VF · #F
+ 2 (sizeof(GlobalIndex) + sizeof(LocalIndex)) · #F ,

where the symbols sizeof and � have the same meaning and the counts of entities and average counts
of subentities can be found in Tables 2.2 and 2.3.
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2.2.9. Benchmark results: triangular and tetrahedral meshes

Table 2.4: Memory requirements [MiB] for storing the triangular and tetrahedral meshes from Table 2.2
in the data structure with different configurations. The minimal configuration includes only those
incidence matrices that are needed for the benchmarks presented in this section, whereas all incidence
matrices are included in the maximal configuration, even if they are unused. Each column corresponds
to different data types for Real, GlobalIndex and LocalIndex in themesh configuration, which are recorded
in triplets in the second header row: f (float), d (double), s (short int), i (int), and l (long int).

Id. Minimal configuration Maximal configuration

f, i, s f, l, i d, i, s d, l, i f, i, s f, l, i d, i, s d, l, i

2D4
1 0.01 0.03 0.02 0.03 0.03 0.06 0.03 0.06

2D4
2 0.05 0.10 0.06 0.10 0.11 0.21 0.11 0.21

2D4
3 0.20 0.38 0.21 0.40 0.41 0.79 0.42 0.80

2D4
4 0.79 1.51 0.84 1.57 1.60 3.10 1.66 3.15

2D4
5 3.14 6.06 3.37 6.29 6.36 12.32 6.59 12.55

3D4
1 0.12 0.24 0.13 0.25 0.48 0.94 0.48 0.94

3D4
2 0.32 0.64 0.33 0.65 1.21 2.36 1.20 2.36

3D4
3 2.55 5.02 2.61 5.09 9.16 18.12 9.22 18.19

3D4
4 20.38 40.25 20.87 40.75 72.91 144.31 73.40 144.80

3D4
5 163.43 323.01 167.28 326.86 583.43 1154.90 587.28 1158.76

Note that the calculated bandwidth is effective, because we assume in the data size calculation that
all data is read exactly once, but in practice, some data (e.g., vertex coordinates) are accessed multiple
times from the surrounding entities and it depends on other factors if these accesses can be efficiently
cached or not.

2.2.9 Benchmark results: triangular and tetrahedral meshes

The results of the first benchmark problem are shown in Table 2.5 and the results of the second
benchmark problem are shown in Table 2.6. The benchmarks were performed on all meshes shown in
Table 2.2, but, for brevity, only the results for the finest mesh in 2D and 3D (2D4

5 and 3D4
5 , respectively)

are shown in Tables 2.5 and 2.6.
Both benchmarks were performed with different configurations of the Mesh class in TNL using

different data types for template parameters: float (f) and double (d) for Real, int (i) and long int (l) for
GlobalIndex, and short int (s) and int (i) for LocalIndex. For brevity, only four representative sets of types
are shown in the tables. It can be seen in Tables 2.5 and 2.6 that selecting the smallest possible types for
the Real, GlobalIndex, and LocalIndex template parameters generally leads to the fastest computations on
both CPU andGPU. In case ofMOAB [M28], we used only one set of types (double for vertex coordinates,
long int for global indices and int for counts of adjacent entities), which was specified when installing
MOAB. Finally, we would like to remark that the performance of all benchmarks performed with
the TNL library does not depend on other mesh configuration parameters, such as subentityStorage

or superentityStorage, which can be used to disable the storage of unnecessary incidence matrices.
This behavior is not included in Tables 2.5 and 2.6, because it would lead to duplicate tables with the
same values. Hence, such configuration parameters influence the dynamic size required for the mesh
representation as shown in Table 2.4, but not the performance of computations using the data structure.

The operations comprised in the benchmarks involve many independent tasks so they can be
easily parallelized. In case of cell measure calculations shown in Table 2.5, the efficiency of the CPU
parallelization depends on the ratio between compute operations and memory accesses. The 2D case
of this benchmark involves simpler computations (a 2 × 2 determinant to calculate the triangle area,
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Table 2.5: Calculation of cell measures on the finest triangular mesh 2D4
5 and finest tetrahedral mesh

3D4
5 . Comparison of computational times �) [ms], effective bandwidth ��, [GB/s], CPU speed-ups

(?ℓ , and GPU speed-ups �(?ℓ . Each row corresponds to different data types for Real, GlobalIndex and
LocalIndex in the mesh configuration, which are recorded in the triplet in the “types” column: f (float),
d (double), s (short int), i (int), and l (long int).

1 th. 12 threads GPU

types �) ��, �) ��, (?12 �) ��, �(?1 �(?12

TNL

2D4
5

f, i, s 0.103 11.6 0.018 66 5.7 0.010 115 9.9 1.7
f, l, i 0.104 18.2 0.017 114 6.3 0.011 177 9.7 1.5
d, i, s 0.115 14.4 0.020 84 5.8 0.011 153 10.6 1.8
d, l, i 0.120 19.9 0.019 127 6.4 0.012 207 10.4 1.6

3D4
5

f, i, s 12.656 3.4 0.748 57 16.9 0.087 493 145.7 8.6
f, l, i 13.299 5.6 1.192 62 11.2 0.123 603 108.5 9.7
d, i, s 13.118 4.2 0.828 66 15.9 0.113 483 116.0 7.3
d, l, i 13.874 6.2 1.098 78 12.6 0.145 592 95.9 7.6

MOAB 2D4
5 d, l, i 1.691 1.4 0.207 12 8.2

3D4
5 d, l, i 59.122 1.4 5.845 15 10.1

1.3 ops/mem) than the 3D case (a 3× 3 determinant to calculate the tetrahedron volume, 2.4 ops/mem).
Consequently, the effective bandwidth ��, for computations using 12 CPU threads on the 2D4

5 mesh
approaches the hardware peak performance (see Table 2.1) and the speed-up (?12 is much lower than 12,
but in case of the 3D4

5 mesh the speed-up (?12 is much higher and the effective bandwidth ��, is much
lower. On the other hand, the efficiency of the GPU parallelization depends primarily on the amount of
data elements being processed. The finest triangular mesh 2D4

5 contains about 60 · 103 cells, while the
finest tetrahedral mesh 3D4

5 contains about 2 · 106 cells (see Table 2.2). Hence, this benchmark cannot
utilize the full potential of the GPU on the triangular mesh where the GPU achieves only moderately
higher effective bandwidth compared to the CPU and the speed-ups�(?12 are only moderately greater
than 1. On the other hand, the tetrahedral mesh allows the benchmark to fully utilize the GPU leading
to approximately 3-4 times higher effective bandwidth compared to the 2D case. Observing the highest
GPU speed-ups �(?1 and �(?12, the GPU computation is more than 100× faster than the sequential
CPU computation and almost 10× faster than the computation using 12 CPU threads.

Due to algorithmic differences, the second benchmark has different limiting factors than the first
benchmark. Depending on the spatial dimension, the benchmark computes either lengths of 2D line
segments, or 3D triangle areas. In both cases it is necessary to evaluate the sqrt function once per
each face. Hence, we expect this benchmark to be compute-bound rather than memory-bound. Indeed,
the effective bandwidth of CPU computations in Table 2.6 is significantly lower than the hardware
peak performance. On the other hand, the effective bandwidth of GPU computations is still high and
comparable to the values achieved in the first benchmark. In case of the triangular mesh 2D4

5 , GPU
speed-ups �(?1 rising above 100 and �(?12 rising above 10 demonstrate that the GPU can be highly
utilized even on a mesh with relatively small number of cells. In case of the tetrahedral mesh 3D4

5 , GPU
speed-ups �(?1 and �(?12 rise above 300 and 30, respectively.

Finally, we would like to comment on the performance differences between the data structures
implemented in TNL [A142] and MOAB [M28]. In case of the first benchmark shown in Table 2.5,
the computations using MOAB were about 13× slower in 2D and about 5× slower in 3D. In case of
the second benchmark shown in Table 2.6, the computations using MOAB were about 40× slower in
2D and more than 130× slower in 3D. This is surprising, because the second benchmark should be
compute-bound rather than memory-bound, and the evaluation of the sqrt function, which is the most
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Table 2.6: Calculation of cell boundary measures on the finest triangular mesh 2D4
5 and finest tetrahedral

mesh 3D4
5 . Comparison of computational times�) [ms], effective bandwidth ��, [GB/s], CPU speed-

ups (?ℓ , and GPU speed-ups �(?ℓ . Each row corresponds to different data types for Real, GlobalIndex
and LocalIndex in the mesh configuration, which are recorded in the triplet in the “types” column:
f (float), d (double), s (short int), i (int), and l (long int).

1 th. 12 threads GPU

types �) ��, �) ��, (?12 �) ��, �(?1 �(?12

TNL

2D4
5

f, i, s 1.288 2.0 0.148 17 8.7 0.012 206 103.5 11.9
f, l, i 1.275 3.3 0.144 29 8.9 0.013 325 99.5 11.2
d, i, s 1.329 2.6 0.151 23 8.8 0.013 261 98.6 11.2
d, l, i 1.288 4.0 0.145 35 8.9 0.014 358 90.0 10.1

3D4
5

f, i, s 65.088 1.9 5.852 21 11.1 0.195 623 334.6 30.1
f, l, i 64.552 3.2 6.492 32 9.9 0.275 752 234.6 23.6
d, i, s 67.323 2.3 6.111 26 11.0 0.239 656 282.2 25.6
d, l, i 68.515 3.5 6.109 40 11.2 0.314 771 218.1 19.4

MOAB 2D4
5 d, l, i 53.086 0.1 20.936 0 2.5

3D4
5 d, l, i 8839.300 0.0 5622.950 0 1.6

expensive computation, needs to be done regardless of which data structure is used. Our investigation
showed that about 80-90% of the computational time is spent in theMOAB function get_adjacencies that
is responsible for obtaining the entities adjacent to given mesh entity. In the first benchmark, we used
only the function get_connectivity, which is implemented efficiently in MOAB, to obtain the subvertices
of given mesh cell. In the second benchmark, we need to access adjacent entities other than vertices,
which is possible only via the function get_adjacencies that is not implemented efficiently in MOAB.
On the other hand, MOAB was designed as a dynamic data structure and provides many advanced
operations such as adaptive refinement of unstructured meshes, which are not possible with the data
structure currently implemented in TNL.

2.2.10 Benchmark results: polygonal and polyhedral meshes

The results of the first benchmark problem are shown in Table 2.8 and the results of the second
benchmark problem are shown in Table 2.9. The benchmarks were performed on all meshes shown in
Table 2.3, but, for brevity, only the results for the finest mesh in 2D and 3D (2D∗

5 and 3D∗
5, respectively)

are shown in Tables 2.8 and 2.9.
Both benchmarks were performed with different configurations of the Mesh class in TNL using

the same data types for template parameters as in the previous subsection. The configuration of
MOAB [M28] was also the same as in the previous subsection. The results for polygonal and polyhedral
meshes showed the same behavior related to the data types as we observed on triangular and tetrahe-
dral meshes: selecting the smallest possible types for the Real, GlobalIndex, and LocalIndex template
parameters generally leads to faster computations on both CPU and GPU compared to the larger types,
and the performance of all benchmarks performed with the TNL library does not depend on other mesh
configuration parameters, such as subentityStorage or superentityStorage, which can be used to disable
the storage of unnecessary incidence matrices. Hence, such configuration parameters influence the
dynamic size required for the mesh representation as shown in Table 2.7, but not the performance of
computations using the data structure.

Similarly to the simplex meshes, the cell measure calculations shown in Table 2.8 have different
characteristics on polygonal and polyhedral meshes. The areas of 2D polygons are calculated using
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Table 2.7: Memory requirements [MiB] for storing the polygonal and polyhedral meshes from Table 2.3
in the data structure with different configurations. The minimal configuration includes only those
incidence matrices that are needed for the benchmarks presented in this section, whereas all incidence
matrices are included in the maximal configuration, even if they are unused. Each column corresponds
to different data types for Real, GlobalIndex and LocalIndex in themesh configuration, which are recorded
in triplets in the second header row: f (float), d (double), s (short int), i (int), and l (long int).

Id. Minimal configuration Maximal configuration

f, i, s f, l, i d, i, s d, l, i f, i, s f, l, i d, i, s d, l, i

2D∗
1 0.02 0.04 0.02 0.04 0.04 0.07 0.04 0.08

2D∗
2 0.07 0.12 0.08 0.13 0.13 0.24 0.14 0.25

2D∗
3 0.24 0.44 0.27 0.47 0.46 0.87 0.49 0.90

2D∗
4 0.90 1.68 1.02 1.80 1.74 3.32 1.85 3.43

2D∗
5 3.54 6.62 4.01 7.09 6.83 13.03 7.30 13.50

3D∗
1 0.22 0.41 0.24 0.43 0.65 1.25 0.66 1.27

3D∗
2 0.47 0.89 0.52 0.94 1.42 2.77 1.46 2.82

3D∗
3 3.42 6.46 3.80 6.84 10.28 20.04 10.65 20.41

3D∗
4 26.38 49.86 29.27 52.76 79.25 154.57 82.15 157.46

3D∗
5 207.55 392.34 230.32 415.11 623.71 1216.41 646.48 1239.18

the surveyor’s formula [A33], which has arithmetic intensity comparable to the algorithm used for 2D
triangles. On the other hand, the calculation of the volumes of 3D polyhedra is more complicated, but
the complexity comes from the amount of data needed for the mesh representation rather than the
complexity of operations. The algorithm is based on the decomposition of polyhedra into tetrahedra
and adding the volumes of tetrahedra. This involves iterating over the faces of each polyhedron, then
over the vertices of each face, and combining the vertices into suitable quadruples. Unfortunately, the
vertex coordinates have to be read multiple times during the iteration from several faces and given
the high average numbers of vertices per face and faces per cell given in Table 2.3, the memory access
patterns may be inefficient. Consequently, the results for the finest polyhedral mesh in Table 2.8 show
values of effective bandwidth that are significantly lower than the hardware peak performance. The
GPU parallelization may be inefficient also due to mapping 1 CUDA thread per mesh cell, because even
the finest polyhedral mesh 3D∗

5 contains only about 3 × 105 cells. Still, the GPU speed-ups �(?1 and
�(?12 rise above 30 and 3.5, respectively.

The second benchmark has different limiting factors than the former. Same as for simplex meshes,
calculations of the face measures (i.e., lengths of edges for polygonal meshes and areas of polygons
for polyhedral meshes) involve the evaluation of the sqrt function once per each face. The results of
CPU computations in Table 2.9 again show that the benchmark is compute-bound, but the effective
bandwidth of GPU computations is still high and comparable to the values achieved on the simplex
meshes. On the finest polyhedral mesh 3D∗

5, the GPU speed-ups�(?1 and�(?12 rise above 230 and 20,
respectively.

Finally, the relative performance differences on polygonal and polyhedral meshes between the data
structures implemented in TNL [A142] and MOAB [M28] are similar to those described in the previous
subsection. In case of the first benchmark shown in Table 2.8, the computations using MOAB were
about 10× slower in 2D and about 6× slower in 3D. In case of the second benchmark shown in Table 2.9,
the computations usingMOABwere about 35× slower in 2D andmore than 40× slower in 3D.The reason
for the difference observed in the second benchmark is due to the inefficient function get_adjacencies

in MOAB as described in the previous subsection.
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Table 2.8: Calculation of cell measures on the finest polygonal mesh 2D∗
5 and finest polyhedral mesh

3D∗
5. Comparison of computational times �) [ms], effective bandwidth ��, [GB/s], CPU speed-ups

(?ℓ , and GPU speed-ups �(?ℓ . Each row corresponds to different data types for Real, GlobalIndex and
LocalIndex in the mesh configuration, which are recorded in the triplet in the “types” column: f (float),
d (double), s (short int), i (int), and l (long int).

1 th. 12 threads GPU

types �) ��, �) ��, (?12 �) ��, �(?1 �(?12

TNL

2D∗
5

f, i, s 0.240 5.8 0.035 40 6.8 0.012 115 19.9 2.9
f, l, i 0.236 9.2 0.031 69 7.5 0.013 171 18.7 2.5
d, i, s 0.295 6.7 0.040 50 7.5 0.013 148 22.0 2.9
d, l, i 0.292 9.5 0.038 73 7.7 0.014 196 20.7 2.7

3D∗
5

f, i, s 87.438 1.1 9.868 10 8.9 2.861 34 30.6 3.4
f, l, i 119.207 1.4 14.333 12 8.3 4.004 42 29.8 3.6
d, i, s 106.037 1.2 11.817 10 9.0 3.410 36 31.1 3.5
d, l, i 133.311 1.5 16.329 12 8.2 4.437 44 30.0 3.7

MOAB 2D∗
5 d, l, i 2.664 1.0 2.416 1 1.1

3D∗
5 d, l, i 686.646 0.3 439.212 0 1.6

Table 2.9: Calculation of cell boundary measures on the finest polygonal mesh 2D∗
5 and finest polyhedral

mesh 3D∗
5. Comparison of computational times�) [ms], effective bandwidth ��, [GB/s], CPU speed-

ups (?ℓ , and GPU speed-ups �(?ℓ . Each row corresponds to different data types for Real, GlobalIndex
and LocalIndex in the mesh configuration, which are recorded in the triplet in the “types” column:
f (float), d (double), s (short int), i (int), and l (long int).

1 th. 12 threads GPU

types �) ��, �) ��, (?12 �) ��, �(?1 �(?12

TNL

2D∗
5

f, i, s 1.344 2.1 0.150 19 9.0 0.013 223 105.4 11.7
f, l, i 1.337 3.3 0.148 30 9.0 0.013 332 99.2 11.0
d, i, s 1.379 2.9 0.152 27 9.1 0.014 289 98.4 10.8
d, l, i 1.353 4.2 0.153 37 8.9 0.014 398 94.8 10.7

3D∗
5

f, i, s 87.859 1.3 7.772 15 11.3 0.369 320 238.2 21.1
f, l, i 93.225 2.1 7.973 24 11.7 0.511 379 182.3 15.6
d, i, s 109.202 1.5 9.151 18 11.9 0.489 329 223.4 18.7
d, l, i 114.673 2.1 9.307 25 12.3 0.653 362 175.5 14.2

MOAB 2D∗
5 d, l, i 46.439 0.1 19.438 0 2.4

3D∗
5 d, l, i 4768.330 0.0 1459.910 0 3.3

49



Chapter 3

Solution of Sparse Linear Systems

This chapter is dedicated to methods for the solution of large and sparse systems of linear equations. It
does not contain any novel work on the methods by the author, but provides an overview of the state
of the art. High performance solvers for sparse linear systems are an important building block for the
numerical methods developed in the following chapter.

The methods for the solution of linear systems are typically classified into direct methods [M13] and
iterative methods [B16, B26]. Iterative methods have become preferable in many applications, especially
where very large linear systems arise, because they can provide significantly lower computational
cost and they are easier to implement efficiently for high performance parallel computing systems
[B26]. In the following sections, we summarize the state of the art iterative methods (Section 3.1),
preconditioning techniques (Section 3.2) and software packages (Section 3.3) providing ready-to-use
implementations of these. In the final Section 3.4, we describe the concept of a distributed sparse
matrix with more implementation details to provide a link between a distributed unstructured mesh
and assembling the linear system for applications such as partial differential equation discretized on
the mesh.

3.1 Iterative methods

Thefirst iterative methods that were used for solving linear systems are the so called stationary methods
such as the Jacobi, Gauss–Seidel, and SOR methods [B26]. Although they have been overcome by more
efficient methods, they are still often used thanks to their simplicity as part of more complex methods
(such as smoothers in multigrid methods).

Probably the most important class of iterative methods nowadays are the Krylov subspace methods,
which include some of the most popular iterative methods used. The conjugate gradients (CG)
method remains the obvious choice for systems with a symmetric positive-definite matrix as it is well-
researched [B16, B26] and provides good convergence and error estimates. Options for symmetric
indefinite systems include the MINRES and SYMMLQ methods [A145]. Similar and more general
methods for systems with a non-symmetric matrix are the biconjugate gradient method (BiCG) and
its stabilized transpose-free variant (BiCGstab) [A173]. GMRES [A153] is another famous and well-
researched method providing many variants for implementation, such as [A13, A15, A16, A133, A176].
The flexible GMRES algorithm [A151] is a notable variant that allows more general preconditioning
techniques to be applied in the GMRES algorithm. Methods based on augmentation and deflation [A46,
A65, A80, A89] have been developed to improve the convergence properties of restarted GMRES. See
[A157] for a thorough review of the development in Krylov subspace methods.

The aforementioned Krylov subspace methods are all suitable for modern high-performance com-
puting platforms, either in their original formulation or with modifications improving their perfor-
mance. Communication-avoiding variants have been developed for the CG, BiCG, and GMRESmethods
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3.2. Preconditioning techniques

[A86, B19, C39, C40]. There are also improved BiCGstab variants for parallel distributed systems [A50,
A117, C41, A191]. Krylov subspace methods can also benefit from various optimizations developed
specifically for GPU accelerators [C3, A79, C39].

The induced dimension reduction methods, denoted as IDR(B), are a new family of Krylov subspace
methods for solving large non-symmetric systems of linear equations [A88, A150, A159]. Although
they were reported to outperform traditional methods such as BiCGstab for several problems, they
are still much less popular. In general, the research focuses on the development of more efficient
preconditioners rather than new iterative methods themselves.

3.2 Preconditioning techniques

Preconditioning is the main technique to improve the robustness and efficiency of iterative methods.
The technique transforms the original linear system into a different system with the same solution, but
which may be easier to solve using an iterative method. Given a generic preconditioner represented by
a non-singular matrix M, the original linear system

Ax = b (3.1)

can be preconditioned either from the left, leading to the preconditioned system

M−1Ax = M−1b, (3.2)

or from the right, leading to
AM−1~ = b, x = M−1~, (3.3)

where the system is solved in terms of the transformed unknown variables ~ = Mx . Finally, a split-
preconditioning in the form

M−1
1 AM−1

2 ~ = M−1
1 b, x = M−1

2 ~ (3.4)

is also possible, where the preconditioner is M = M1M2.
There is no consensus on which kind of preconditioning is the best and how to choose the

preconditioning matrix M. The choices typically depend on the iterative method used as well as on
specific matrix properties for the given problem, however, several general-purpose preconditioners
that do not require problem-specific input have been developed. Firstly, the minimal requirement
imposed on the preconditioner M is that it must be non-singular. It may also be required to preserve
the symmetry of the original matrix A in the preconditioned system. One way to achieve this is to
use the split-preconditioning approach with M = M1M2, where M1 and M2 are non-singular and
M1 = M)

2 . Additionally, the preconditioner should approximate A in some sense, such that M−1A
is close to the identity matrix I. Note that the matrix of the preconditioned system (i.e., M−1A, AM−1,
or M−1

1 AM−1
2 ) is not assembled explicitly as that would be too expensive and sparsity would be lost.

Instead, additional requirements are that the operation M−1v should be easy to apply to an arbitrary
vector v and it should offer opportunities for an efficient parallel implementation. However, in practice,
the last three requirements often go against each other: it is difficult to develop a preconditioner which
is all effective (i.e., approximates the matrix A well), cheap (i.e., can be applied easily), and parallel at
the same time.

3.2.1 State of the art

There are two general approaches to constructing preconditioners. One approach is to design spe-
cialized algorithms that are (nearly) optimal for a small class of problems. These typically utilize the
knowledge of the underlying problem, such as the original partial differential equation from which
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3.2.1. State of the art

the discrete problem arose. While these preconditioners are often very effective, obtaining or using the
underlying information may not be feasible or desirable. Hence, the other approach comprising general
purpose, purely algebraic preconditioning techniques may be preferable. These preconditioners, while
not optimal for any specific problem, achieve reasonable efficiency for a large class of problems and
they are often easier to implement and use in software frameworks. In the following, we give a brief
overview of the most successful techniques. Detailed reviews are available in, e.g., [A24, A77, A146].

The simplest preconditioning techniques are based on stationary methods such as Jacobi, Gauss–
Seidel, SOR, or their symmetric variants [A24, B26].

Another traditional class of generic preconditioners are incomplete factorization techniques, such
as incomplete Cholesky (IC) and incomplete LU (ILU), which bring ideas developed for direct solution
of sparse linear systems to iterative methods. There are multiple strategies to control the fill-in
by selecting the sparsity pattern of the factors either statically based on the matrix entry positions
or dynamically based on the matrix entry values [A29, A124, A137, A152]. Additionally, algebraic
multilevel techniques originating from domain decomposition and multigrid methods were applied
also to incomplete factorization methods [A32, A95, A154] and algorithmic variants were developed to
address parallelization and scalability issues [A4, A48, A49, A100, C25, C27, A177]. Several incomplete
factorization algorithms were also ported to GPU accelerators [M16, M17], though their efficiency
remains limited compared to other preconditioning techniques due to two sparse triangular solves
per each preconditioning step. Multiple iterative or otherwise inexact techniques were proposed to
address this issue [C1, C2, A130, A156]. Finally, several approaches to incrementally update an existing
factorization were developed [A5, A41].

Sparse approximate inverse preconditioners provide an alternative approach to remedy problems
arising when incomplete factorizations are applied to indefinite systems or systems that are not
diagonally dominant [A24, B26]. They also attracted attention thanks to their potential in parallel
environments [A92, A165], including GPU accelerators [A27, A28, A57, A144]. Approximate inverse
preconditioners may be applied to symmetric as well as non-symmetric systems and they may be
computed in a non-factored form where the preconditioner is expressed as a single matrix, or in a
factored form where the preconditioner is expressed as a product of two or more matrices. For both
classes there exist multiple completely different approaches to compute the approximate inverse or
approximate inverse factors, the two main approaches are Frobenius norm minimization [A47, C16,
A112–A114, A185] and incomplete bi-conjugation [A25, A26, A28, A36]. The sparse approximate
inverse algorithms based on bi-conjugation show algebraic behavior that is similar to the incomplete
LU factorizations [A30, A31]. When matrix values are changed but the sparsity pattern remains the
same, it is possible to reuse an existing approximate inverse preconditioner to compute the updated
approximate inverse more efficiently [A36, A185]. Several dynamic pattern selection strategies and
multilevel techniques for sparse approximate inverse preconditioners have been recently investigated
[A27, A66, A103, A104, A115].

Polynomial preconditioning is closely related to the development of Krylov methods. It utilizes
spectral information of the linear system matrix and is favorable for parallel architectures where the
sparse matrix–vector multiplication delivers high performance. Several types of polynomials can be
used, the Chebyshev [C5, A9], least-squares [A87, A125], and Newton [A129] polynomials are the most
common in practice.

Several non-algebraic techniques were developed for solving linear systems arising from the
discretization of partial differential equations. The convergence rate of Krylov subspace methods
preconditioned by the aforementioned techniques applied to these linear systems deteriorates as the
systems become larger [B16, B26]. Consequently, the efficiency of these methods drops significantly
due to increasing number of iterations combined with the sheer problem size. To this effect, multigrid
methods [B7, B31, B33] were developed to obtain (nearly) optimal techniques in the sense that the
number of iterations does not depend on the problem size, or increases onlymildly. Althoughmultigrid,
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hereafter referred to as geometric multigrid (GMG), was originally developed as a method for solving
partial differential equations, it was later generalized into algebraic multigrid (AMG) techniques [B24,
B25, A162, B31, A174, A183] that can be applied even to problems not involving partial differential
equations at all. Unfortunately, multigrid techniques are naturally communication-bound due to coarse
grid computations, interpolation and restriction operations. Consequently, both geometric multigrid
[A20, C21, B15, A190] and algebraic multigrid [C7, A21, A78, A128] have been recently subject of
intensive research to address the efficiency and scalability challenges on modern parallel platforms,
including GPU accelerators.

Domain decomposition methods [B28, B30] are another class of techniques developed to effi-
ciently solve partial differential equations. Contrary to multigrid, domain decomposition methods
were associated with parallel processing since their origin and massively parallel implementations for
contemporary platforms exist of both main domain decomposition methods, BDDC and FETI [A116,
A160]. Although both multigrid and domain decomposition were derived as methods for the solution
of partial differential equations, they are nowadays used mostly as preconditioners to accelerate the
convergence of Krylov subspace methods. Multigrid and domain decomposition methods borrowed
ideas from each other during their development, which lead to the development of various algebraic
multilevel preconditioning techniques [A11, A12, A62]. Similarly to multigrid, recent development of
domain decompositionmethods tends towards purely algebraic preconditioning techniques [A2, A172].

To conclude the section, we mention some general techniques that can be used when multiple
preconditioners accelerating the solution of a linear system are available. Rather than formulating
a new preconditioner that combines the features of multiple preconditioners, they can be applied
together within a multi-preconditioned iterative method [A35, A91, A161]. More generally, when
solving sequences of similar linear systems, such as those arising from the discretization of time-
dependent partial differential equations, it may be possible to reuse information from previously
computed problems, including preconditioners [A3, B10, B14, A157].

3.3 Software packages

The software listed here can be divided into two main groups: the first containing software dedicated
specifically to providing iterative methods and/or preconditioners for linear systems, and the other
group consisting of software with larger ambitions, such as scientific computing frameworks. Packages
from the latter group can often be interfacedwith smaller libraries from the former group to supplement
their native algorithms. In both groups, we focus on open-source software with active development
status. Each package is listed with a brief description and overview of the main features. In the final
subsection, we summarize the current status in the Template Numerical Library that was introduced
in Section 1.3.

3.3.1 Dedicated projects

Hypre [C15, C19, C20] is an open-source library of high performance preconditioners and iterative
solvers for large sparse linear systems. Additionally, it provides several interfaces to create linear
systems based on structured or semi-structured grids, finite element discretizations, or general linear-
algebraic interface. The implemented solvers include common Krylov subspace methods such as
CG, GMRES, and BiCGstab. Available preconditioners are algebraic multigrid (BoomerAMG [A184]),
several variants of incomplete LU factorization [A100, C25, C27], sparse approximate inverse [A47,
A104, A114], and other. The library is implemented in the C language, uses MPI [M15] for distributed
computing and optionally uses CUDA [M19], HIP [M1], or SYCL [M11] for GPU acceleration.

PARALUTION [O19, M14] is an open-source library implemented in the C++ language providing
parallel iterative solvers and preconditioners. Additionally, it provides plugins for several high-level

53



3.3.2. Large frameworks

libraries, including deal.II [A17] and OpenFOAM [M9]. Among the implemented iterative solvers
are stationary methods (Jacobi, Gauss–Seidel, symmetric Gauss–Seidel, SOR, SSOR), Krylov subspace
solvers (CG, BiCGstab, GMRES, IDR), geometric and algebraic multigrid, and other. Available precon-
ditioners are stationary methods, several variants of incomplete LU factorization, additive Schwarz
preconditioner, and other. The library also provides multiple sparse matrix formats, including CSR and
Ellpack. PARALUTION uses MPI [M15] for distributed computing and provides several back-ends for
parallel execution: OpenMP [A51], CUDA [M19], OpenCL [M10]. It was also ported to the ROCm [M2]
platform as rocALUTION [O27].

AmgX [A141, O25] is an open-source library of GPU accelerated algebraic multigrid and precondi-
tioned iterative methods developed by NVIDIA. Besides algebraic multigrid, it provides also standard
Krylov subspacemethods (CG, BiCGstab, GMRES) and several preconditioners/smoothers (block Jacobi,
Gauss–Seidel, ILU, polynomial). AmgX uses CUDA [M19] for GPU acceleration and MPI [M15] for
distributed computing. The algebraic multigrid implementation is partially based on the Hypre library.

AMGCL [A58, A59] is an open-source header-only C++ library for solving large sparse linear
systems with algebraic multigrid. It also provides several Krylov subspace methods (CG, BiCGstab,
GMRES, IDR) and preconditioners/smoothers (Jacobi, Gauss–Seidel, Chebyshev, ILU, SPAI, and some
problem-specific preconditioners for Navier–Stokes and reservoir simulations). Furthermore, it pro-
vides matrix adapters for wrapping data structures of various other libraries, including Eigen [O9],
Trilinos Epetra [O8] and uBlas [O39]. AMGCL builds the algebraic multigrid hierarchy on a CPU and
then transfers it to one of the provided back-ends. The currently supported acceleration frameworks
are OpenMP [A51], CUDA [M19], and OpenCL [M10]. AMGCL also supports MPI [M15] for distributed
computing.

Ginkgo [A6] is an open-source linear algebra library implemented in modern C++. It provides mul-
tiple sparse matrix formats, Krylov solvers (CG, BiCGstab, GMRES, IDR), and preconditioners (Jacobi,
IC, ILU [A4], incomplete sparse approximate inverse [A7]). There is also a preliminary implementation
of an algebraic multigrid solver and preconditioner. Ginkgo supports native parallel execution via
OpenMP [A51], CUDA [M19], HIP [M1], or SYCL [M11]. Support for distributed computing via MPI
[M15] in Ginkgo is a work in progress.

There aremany smaller open-source software packageswhich serve as the basis for the development
of new or improved numerical methods. The following projects are some of the most successful ones
with continuing development. The PyAMG [A22] project implements the algebraic multigrid method
and supporting tools in the Python language, with the help of C++ for performance-critical operations.
RAPtor [O3] is a C++ implementation of parallel algebraic multigrid based on MPI [M15]. Monolis
[O22] is a monolithic domain decomposition based linear system solver implemented in Fortran.
Finally, BDDCML [O29, A160] is a massively parallel linear system solver based on the adaptive
multilevel BDDC method.

3.3.2 Large frameworks

Trilinos [A96, C23, A97, O37] is a large collection of open-source packages with various objectives in
scientific computing. The individual packages are highly inter-operable, but not strictly interdependent,
i.e., each package depends on interfaces that can be satisfied by multiple other packages rather than
on an explicit implementation. Trilinos packages are developed in the C++ language and include many
direct and iterative linear system solvers, ILU-type preconditioners, smoothers, multigrid and domain
decomposition methods. Trilinos supports distributed computing using MPI [M15], multi-core parallel
execution using a variety of approaches, as well as GPU acceleration.

PETSc [M4, O2, C8] is an open-source library of data structures and algorithms for parallel solution
of scientific problems modeled by partial differential equations. Unlike Trilinos, PETSc is a monolithic
library developed in the C language. Its KSP module provides many parallel and sequential, direct
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and iterative solvers for linear systems and the PC module provides preconditioners such as stationary
methods, ILU factorizations, algebraic multigrid, or BDDC.

OpenFOAM [M9, C26] is a large open-source multiphysics package based on the finite volume
method. It also provides its own implementation of various iterative methods and preconditioners for
linear systems, such as stationary methods, incomplete factorizations, CG and BiCGstab methods, and
geometric agglomerated algebraic multigrid. OpenFOAM itself does not support GPU acceleration,
though the possibilities are being explored via external extensions [M6, C29, C33].

DUNE (Distributed and Unified Numerics Environment) [C10] is a modular C++ library for solving
partial differential equations with finite element, finite volume, or finite difference methods. Its ISTL
(Iterative Solver Template Library)module provides implementations of several Krylov subspace solvers
and preconditioners, including algebraic multigrid.

3.3.3 Template Numerical Library

In this subsection, we summarize the current status related to the solution of linear systems in the
TNL library that was introduced in Section 1.3. Unless stated otherwise, all implementations support
any matrix format implemented in TNL, distributed computing with MPI [M15], and GPU acceleration
using CUDA [M19].

TNL does not implement any direct method for the solution of large, dense or sparse, linear systems.
The currently implemented stationary iterative methods are Jacobi and SOR (the latter works only in a
shared memory environment). The currently implemented Krylov subspace methods are CG, BiCGstab,
GMRES, TFQMR, IDR.

The only preconditioner fully implemented in TNL is the Jacobi (diagonal) preconditioner. Addi-
tionally, TNL provides sequential implementations of the ILU(0) and ILUT factorizations that can also
be applied as a block-Jacobi preconditioner for distributed matrices.

To easily utilize the state of the art solvers and preconditioners in TNL, we started implementing
wrappers for external libraries with more advanced features. There are currently finished wrappers for
iterative methods and preconditioners from the Hypre [C15, C19, C20] library (they require the CSR
matrix format with specific conventions that are described in the following section). Additionally, TNL
provides a wrapper for UMFPACK [A56] which applies a direct method to solve the linear system (it
requires a non-distributed matrix in the CSR format).

3.4 Distributed sparse matrix

Solving a linear system on a distributed computing platform requires a suitable partitioning of the data
among theMPI ranks. The system is typically distributed in a row-wisemanner such that the rows of the
matrix and vectors are partitioned into non-overlapping ranges that are assigned to individual ranks. A
distributed data structure is then used for combining the local data of each rank with information about
the partitioning (e.g., assigning global indices). While the implementation of a distributed vector is
straightforward, data structures for a distributed sparsematrix that provides coupling between blocks of
the partitioningmay be designed in different ways. This section describes data structures for distributed
sparse matrices implemented in the TNL (see Section 1.3) and Hypre [C15, C19, C20] libraries.

The implementation of a distributed sparse matrix in TNL is closely bound to the distributed mesh
and its MPI synchronizer described in Section 2.2.6. Each row of the global matrix corresponds to one
degree of freedom associated to an entity of the global mesh and the matrix partitioning is determined
by the partitioning of the mesh. The data owned by a particular rank is stored in a single local
matrix represented by a sparse matrix data structure in TNL. Each row and column of the local matrix
corresponds to an entity of the local mesh:

• Rows correspond to entities owned by the rank (i.e., not ghost entities).
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• Columns may correspond to entities owned by the rank or to ghost entities. Columns owned by
the rank belong to the diagonal block of the global matrix and columns corresponding to ghost
entities belong to the off-diagonal blocks.

It is important to realize that local indexing is used in the local matrix, given by indices used in the local
mesh. Hence, a local matrix with #A rows and #2 > #A columns is stored such that the first #A columns
represent the diagonal block of the global matrix and the remaining #2 −#A columns represent the off-
diagonal blocks in a compact form (there are no gaps between the off-diagonal columns as there would
be if the global indexing was used). Global indices of an entry in the local matrix can be determined
based on the global indices of the correspondingmesh entity. As explained in Section 2.2.6, local entities
owned by the rank are contiguous and thus their global indices can be determined by adding an offset to
the local indices, but global indices of ghost entities must be stored explicitly in an array. The compact
representation of the local matrix is advantageous for operations such as distributed sparse matrix–
vector multiplication, which can be performed in two steps:

1. Use the DistributedMeshSynchronizer class described in Section 2.2.6 to synchronize data corre-
sponding to ghost entities in the input vector. Note that the distributed vector contains #2 local
elements where the last #2 − #A values correspond to ghost entities.

2. Perform a sparse matrix–vector multiplication with the #A ×#2 local matrix and the local vector
of #2 elements to compute the first #A elements of the output vector. The #2 −#A ghost elements
in the output vector can be synchronized with DistributedMeshSynchronizer if needed.

The implementation of a distributed sparse matrix in the Hypre library [C15, C19, C20] is different
from TNL in several aspects. Firstly, the data structure is purely algebraic in the sense that it provides
all necessary information without relying on a mesh data structure. Internally, Hypre uses the CSR
format with specific conventions for the representation of sparse matrices:

• Each matrix block is represented by the hypre_CSRMatrix structure. An important convention is
that the diagonal entry in each rowmust be stored as the first value of the row in the CSR format.

• The hypre_ParCSRMatrix structure represents a distributed matrix. Among others, it contains the
attributes diag, offd, and col_map_offd.

• The diag and offd attributes are instances of the hypre_CSRMatrix structure, which represent the
diagonal and off-diagonal block of the local matrix, respectively. The former is typically a square
matrix for which data is always available in the local part of a distributed vector.

• The col_map_offd attribute is an array that provides global indices for the off-diagonal block. It is
indexed by columns of the offd matrix.

The exchange of non-local data in Hypre is implemented based on the assumed partition scheme [A14]
which allows for a scalable determination of global information. Overall, it can be understood as an
algebraic generalization of the indexing with ghost entities in TNL.
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Chapter 4

Mixed-Hybrid Finite Element Method

The content of this chapter is based on the author’s previous thesis [B20] and the paper [A72], which
describe NumDwarf, a numerical scheme for the solution of a system of partial differential equations in
a general coefficient form. NumDwarf is based on the mixed-hybrid finite element method (MHFEM)
[B6] and it was originally developed for simulating multicomponent flow and transport phenomena in
porousmedia (see [A10, A158] for several recent applications), but it can be used for any problemwhose
governing equations can be written in a compatible form. Since the publication of the paper, the author
incorporated an implicit upwind scheme for advective terms and greatly extended the computational
aspects of the solver. Most notably, the solver supports MPI computations on distributed unstructured
meshes.

Compared to the original computational performance study from [A72], which was computed on
structured grids as well as unstructured meshes but using only CUDA and OpenMP parallelization,
the presented results were computed only on unstructured meshes, but include MPI-based distributed
computations using multiple GPUs and multiple CPU nodes. This extends the updated performance
study from [A110] with a comparison between OpenMP and MPI for multi-core CPU parallelization on
a single node, and a comparison between different solvers for sparse linear systems.

The chapter is organized as follows. First, we introduce the general formulation of the PDE
system solved by NumDwarf in Section 4.1 and summarize the numerical scheme in Section 4.2.
Section 4.3 summarizes the mathematical model of incompressible two-phase flow in porous media
and Section 4.4 presents the results of a benchmark problem that was used to verify the numerical
scheme and implementation by means of comparison against known semi-analytical solutions. The
same benchmark problem was used to also evaluate the performance of the solver using various com-
putational parameters. The benchmarking methodology is described in Section 4.5 and the benchmark
results are presented in Section 4.6.

4.1 General formulation

The numerical scheme is implemented for a PDE system written in the form

=∑
9=1

#8, 9
m/ 9

mC
+

=∑
9=1

u8, 9 · ∇/ 9 + ∇ ·
[
<8

(
−

=∑
9=1

D8, 9∇/ 9 +w8

)
+

=∑
9=1

/ 9a8, 9

]
+

=∑
9=1

A8, 9/ 9 = 58 (4.1)

for 8 ∈ {1, . . . , =}, where ` = [/1, . . . , /=]) is the vector of unknown functions depending on spatial
coordinates x ∈ Ω ⊂ R� and time C ∈ [0, Cmax], where � ∈ {1, 2, 3} denotes the spatial dimension, Ω
is a polyhedral domain, and Cmax is the final simulation time. The remaining symbols N = [#8, 9 ]=8,9=1,
u = [u8, 9 ]=8,9=1, m = [<8]=8=1, D = [D8, 9 ]=8,9=1, w = [w8]=8=1, a = [a8, 9 ]=8,9=1, r = [A8, 9 ]=8,9=1, f = [58]=8=1 are
given problem-specific coefficients. Note that the coefficients may, in general, depend on the vector of
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unknown functions ` . The idea behind the notation is that coefficients dependent on ` in non-linear
terms are evaluated by the numerical scheme using the values from the previous time level, whereas
the symbols / 9 in Equation (4.1) are treated implicitly. See [A72, B20] for details.

The diffusive flux in Equation (4.1) is denoted as q8 =<8v8 , where

v8 = −
=∑
9=1

D8, 9∇/ 9 +w8 . (4.2)

We also denote the full flux involving diffusion and advection as W8 = q8 +
=∑
9=1
/ 9 (a8, 9 + u8, 9 ).

The system of equations (4.1) must be supplemented by a suitable initial condition

` (x, 0) = `ini(x), ∀G ∈ Ω, (4.3)

and boundary conditions for all 8 ∈ {1, . . . , =}, all x ∈ mΩ, and all C ∈ (0, Cmax). There are multiple
options, such as the Dirichlet-type fixed-value condition

/8 (x, C) = /D
8 , ∀G ∈ ΓD

8 ⊂ mΩ, (4.4a)

or the Neumann-type condition for the diffusive flux

v8 (x, C) · nmΩ (x) = E
N1
8
, ∀G∈ Γ

N1
8

⊂ mΩ, (4.4b)

or the Neumann-type condition for the total flux

W8 (x, C) · nmΩ (x) = &
N2
8
, ∀G∈ Γ

N2
8

⊂ mΩ, (4.4c)

where ΓD
8 , ΓN1

8
and ΓN2

8
denote parts of the domain boundary where the respective conditions are active

and nmΩ denotes the outward unit normal vector.
Note that in case of non-linear problems where the coefficient m depends on the unknowns ` , it

may be necessary to specify fixed values of/8 even on parts of the domain boundary ΓN1
8

and ΓN2
8

where
the Neumann-type conditions are used to specify inflow, see [A72, B20] for details.

4.2 Numerical scheme

This section provides detailed derivation of the numerical scheme for solving Equation (4.1) based
on [A72, B20]. The scheme is based on the combination of the mixed-hybrid finite element method
(MHFEM) [B6] and the discontinuous Galerkin method [A8] for spatial discretization, the Euler method
for temporal discretization and the semi-implicit approach of the frozen coefficients method for the
linearization in time. The scheme is stabilized the mass-lumping technique and two upwind schemes
for the advective terms: an explicit upwind that was used in [A72, B20], or an implicit upwind based on
[A38, A149]. The explicit upwind scheme allows to employ a modification of MHFEM from [A72] to
solve problems with vanishing diffusion. The scheme is locally conservative and leads to the solution
of one linear system per time step.

In this work, we consider conforming unstructured homogeneous meshes denoted as Kℎ and use
the lowest-order Raviart–Thomas–Nédélec space RTN0(Kℎ) for spatial discretization. The set of faces
of the mesh Kℎ will be denoted as Eℎ and the set of faces of an individual element  ∈ Kℎ will be
denoted as E . Each face � ∈ Eℎ is either inner or lies on the domain boundary, the set of interior
faces is denoted by E int

ℎ and the set of boundary faces is denoted by Eext
ℎ . The number of elements of

the discrete set A is denoted by #A. See Section 2.2.2 for details on the terminology related to meshes.
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4.2.1. Function spaces

4.2.1 Function spaces

We assume that the scalar functions #8, 9 ,<8 , A8, 9 , 58 and / 9 belong to the function space !2(Ω), Ω ⊂ R�
for all 8, 9 ∈ {1, . . . , =}. We further assume that the vector functions u8, 9 , a8, 9 , w8 , v8 and q8 are for all
8, 9 ∈ {1, . . . , =} elements of the function space H(div,Ω). The mixed variational formulation of the
problem given by Equations (4.1) and (4.2) can be formally derived by multiplying Equation (4.1) by
the function i ∈ + ≡ !

2(Ω), Equation (4.2) by the function 8 ∈ W ≡ H(div,Ω), and integrating both
equations over the domain Ω. The solution /8 ∈ + , v8 ∈ W, 8 ∈ {1, . . . , =} of the variational problem is
approximated using the mixed finite element method in suitable finite-dimensional subspaces +ℎ ⊂ + ,
Wℎ ⊂ W. In this work, we use the lowest order spaces, the space of piecewise constant functions
(0(Kℎ) and the Raviart–Thomas–Nédélec space RTN0(Kℎ).

The Raviart–Thomas–Nédélec space RTN0(Kℎ) is defined in several phases [B6]. First, the local
space RTN0( ) ⊂ H(div,  ) is defined on each element  ∈ Kℎ generated by the basis functions
8 ,� ∈ H(div,  ), � ∈ E . The choice of the basis functions 8 ,� is not unique, but in general it is
convenient for them to satisfy the conditions

∇ · 8 ,� (x) =
1

| |�
, ∀� ∈ E ,∀x ∈  , (4.5a)

8 ,� (x) · n ,� =
1

|� |�−1
X�� , ∀�, � ∈ E ,∀x ∈ �, (4.5b)

where n ,� denotes the unit normal vector on the face � ∈ E oriented outward from the element , X��
represents the Kronecker delta, and | · |3 denotes the 3-dimensional Lebesgue measure, 3 ∈ {0, . . . , �}
and | · |0 ≡ 1. The particular form of the basis functions depends on the spatial dimension � and the
geometry of the element . The basis functions on rectangles, cuboids, and simplex elements satisfying
the conditions (4.5) are shown in Appendix D.

In the second phase, we use the local spaces RTN0( ) to define the broken space

RTN0
0(Kℎ) =

{
8 ∈ [!2(Ω)]�

��� ∀ ∈ Kℎ, 8 | ∈ RTN0( )
}
. (4.6)

However, the space RTN0
0(Kℎ) is not a subspace of the space H(div,Ω).

The space RTN0(Kℎ) can be defined as a subspace of the space H(div,Ω) by adding additional
requirements. In the sense of Proposition 1.2 in [B6, p. 95], the functions 8 ∈ RTN0(Kℎ) must have
continuous normal traces on the inner faces of the mesh. This property can be equivalently expressed
by a balance condition, which we use to define the space RTN0(Kℎ):

RTN0(Kℎ) =
8 ∈ RTN0

0(Kℎ)
���� ∀� ∈ E int

ℎ , � ∈ E 1
∩ E 2

,

∫
�

8 | 1
· n 1,�

+
∫
�

8 | 2
· n 2,�

= 0

 .
(4.7)

4.2.2 Approximation of vector functions

The vector functions v8 , w8 , q8 , a8, 9 and u8, 9 are approximated in the space RTN0(Kℎ). The expression
in the basis of the broken space RTN0

0(Kℎ) gives

v8 (x, C) ≈
∑
 ∈Kℎ

∑
�∈E 

E8, ,� (C)8 ,� (x), (4.8a)

w8 (x, C) ≈
∑
 ∈Kℎ

∑
�∈E 

F8, ,� (C)8 ,� (x), (4.8b)
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4.2.3. Approximation of scalar functions

q8 (x, C) ≈
∑
 ∈Kℎ

∑
�∈E 

@8, ,� (C)8 ,� (x), (4.8c)

a8, 9 (x, C) ≈
∑
 ∈Kℎ

∑
�∈E 

08, 9, ,� (C)8 ,� (x), (4.8d)

u8, 9 (x, C) ≈
∑
 ∈Kℎ

∑
�∈E 

D8, 9, ,� (C)8 ,� (x), (4.8e)

for all x ∈ Ω and C ∈ (0, Cmax), where 8 ,� are the basis functions of the space RTN0( ). Let n ,�
denote the unit normal vector on the face � ∈ E oriented outward from the element  . By integrating
the normal trace v8 | · n ,� over the face � ∈ E and using the properties of the basis functions (4.5),
we obtain ∫

�

v8 | · n ,� ≈
∫
�

∑
� ∈E 

E8, ,�8 ,� · n ,� = E8, ,� . (4.9)

Analogous relations hold for the functionsw8 , q8 , a8, 9 and u8, 9 . Thus, the coefficients E8, ,� ,F8, ,� , @8, ,� ,
D8, 9, ,� and 08, 9, ,� appearing in Equation (4.8) correspond to the numerical flux of the corresponding
function through the face � ∈ E in the direction of the outward normal vector with respect to
the element  . In order to obtain an approximation of the functions in the space RTN0(Kℎ), the
coefficients must satisfy the continuity condition for the normal traces on interior faces of the mesh (see
Equation (4.7)). Thus, on the face � ∈ E int

ℎ separating the elements  1 and  2, the following conditions
must hold:

E8, 1,�
+ E8, 2,�

= 0, (4.10a)

F8, 1,�
+F8, 2,�

= 0, (4.10b)

@8, 1,�
+ @8, 2,�

= 0, (4.10c)

08, 9, 1,�
+ 08, 9, 2,�

= 0, (4.10d)

D8, 9, 1,�
+ D8, 9, 2,�

= 0. (4.10e)

These conditions correspond to the assumption of zero source terms on the face � and thus represent
the local balance of the quantities v8 ,w8 , q8 , a8, 9 and u8, 9 .

4.2.3 Approximation of scalar functions

For the approximation of scalar functions, we consider a finite-dimensional space +ℎ ≡ (0(Kℎ) of
piecewise constant functions on elements  ∈ Kℎ generated by the basis functions

i (x) =
{
1 if x ∈  ,
0 otherwise.

(4.11)

Important properties of the basis functions of the space (0(Kℎ) are:

suppi =  ,

∫
Ω

i = | |� , ∇i = 0 in  . (4.12)

The scalar coefficients #8, 9 ,<8 , A8, 9 , and 58 in Equation (4.1) are approximated by projection into the
space (0(Kℎ), i.e.

/ 9 (x, C) ≈
∑
 ∈Kℎ

/ 9, (C)i (x), (4.13a)
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4.2.4. Discretization of the diffusive term

#8, 9 (x, C) ≈
∑
 ∈Kℎ

#8, 9, (C)i (x), (4.13b)

<8 (x, C) ≈
∑
 ∈Kℎ

<8, (C)i (x), (4.13c)

A8, 9 (x, C) ≈
∑
 ∈Kℎ

A8, 9, (C)i (x), (4.13d)

58 (x, C) ≈
∑
 ∈Kℎ

58, (C)i (x), (4.13e)

for all x ∈ Ω and C ∈ (0, Cmax). The coefficients / 9, , #8, 9, , <8, , A8, 9, and 58, appearing in
Equation (4.13) can be interpreted as the mean values of the respective quantity on the element
 ∈ Kℎ at given time. The variational approximation in the space of piecewise constant functions
thus corresponds to the cell-centered finite volume method (CFVM).

4.2.4 Discretization of the diffusive term

Now we discretize the diffusive term given by Equation (4.2). Let us define the partial velocity v8, 9 for
8, 9 ∈ {1, . . . , =} and assume that v8, 9 belongs to the space H(div,Ω):

v8, 9 = −D8, 9∇/ 9 . (4.14)

The approximation of v8, 9 in the local space RTN0( ) can be written by

v8, 9 | ≈
∑
�∈E 

E8, 9, ,�8 ,�, (4.15)

where 8 ,� denotes the basis function of the space RTN0( ). First, let us assume that the tensor D8, 9 is
symmetric and positive definite on the element  . Then we can multiply Equation (4.14) by its inverse
and require the resulting equality to hold in the weak sense∑

�∈E 

E8, 9, ,�

∫
 

8) ,�D
−1
8, 9 8 ,� = −

∫
 

8) ,�∇/ 9 , ∀� ∈ E , (4.16)

where 8 ,� denotes the basis function of the space RTN0( ). Next, to modify the right-hand side of
Equation (4.16), we use the Green’s formula, Equation (4.13a), the properties of the basis functions (4.5),
and Equation (4.12):

−
∫
 

8) ,�∇/ 9 = −
∫
m 

/ 98
)
 ,�nm +

∫
 

/ 9∇ · 8 ,� = −/ 9,� + / 9, , (4.17)

where the coefficients / 9,� represent new degrees of freedom for the variable / 9 on the faces of the
mesh. According to [B6, ch. 5.1.2], the coefficients / 9,� play the role of Lagrange multipliers in the
scheme, which allow to formulate the variational problem in Equation (4.16) locally without requiring
the continuity of the normal traces of the basis functions 8 ,� . When the lowest order spaces are used,
the coefficients / 9,� can be interpreted as the mean value of the quantity / 9 on the face � .

Using the notation �8, 9, ,�,� =
∫
 
8) ,�D

−1
8, 9 8 ,� , Equation (4.16) can be written as∑

�∈m 
E8, 9, ,��8, 9, ,�,� = / 9, − / 9,� . (4.18)
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4.2.5. Discretization of the scalar equation

The coefficients �8, 9, ,�,� form a symmetric and positive definite matrix B8, 9, =
[
�8, 9, ,�,�

]
�,� ∈E 

and its
inverse is denoted b8, 9, =

[
18, 9, ,�,�

]
�,� ∈E 

. Thematrices B8, 9, and b8, 9, for different types of elements
are given explicitly in Appendix E. Next, Equation (4.18) can be inverted as

E8, 9, ,� = 18, 9, ,�/ 9, −
∑
� ∈E 

18, 9, ,�,�/ 9,� , (4.19)

where 18, 9, ,� =
∑

� ∈E 
18, 9, ,�,� .

If the tensorD8, 9 is zero on the element , the projection v8, 9 | is also zero, and hence the coefficients
E8, 9, ,� must be zero and we can define 18, 9, ,�,� = 0 for all �, � ∈ E . In both cases, the coefficients
E8, ,� can be expressed using / 9, and / 9,� as

E8, ,� =

=∑
9=1

©­«18, 9, ,�/ 9, −
∑
� ∈E 

18, 9, ,�,�/ 9,�
ª®¬ +F8, ,� . (4.20)

4.2.5 Discretization of the scalar equation

The variational formulation of the problem given by Equation (4.1) is obtained by multiplying the 8-th
equation by the function i ∈ + ≡ !2(Ω) and integrating over the domain Ω:

=∑
9=1

∫
Ω

#8, 9
m/ 9

mC
i +

=∑
9=1

∫
Ω

u8, 9 · ∇/ 9i +
∫
Ω

∇ ·
(
<8v8 +

=∑
9=1

/ 9a8, 9

)
i +

=∑
9=1

∫
Ω

A8, 9/ 9i =

∫
Ω

58i. (4.21)

We use the approach of the discontinuous Galerkin method (DGM) to define the approximate solution
of this problem. As already mentioned, we switch from the space+ to the finite-dimensional subspace
+ℎ ≡ (0(Kℎ). By setting i = i and using Equations (4.12) and (4.13), we obtain the following
substitutions for terms containing only scalar coefficients:∫

Ω

#8, 9
m/ 9

mC
i ≈ | |�#8, 9, 

d/ 9, 
dC

, (4.22a)∫
Ω

A8, 9/ 9i ≈ | |�A8, 9, / 9, , (4.22b)∫
Ω

58i ≈ | |� 58, . (4.22c)

To modify the terms containing vector coefficients, we use Equation (4.8), the properties of the basis
functions in Equations (4.5) and (4.12), and the Green’s formula:∫

Ω

u8, 9 · ∇/ 9i =

∫
m 

/ 9i u8, 9 · nm −
∫
 

/ 9i ∇ · u8, 9 −
∫
 

/ 9u8, 9 · ∇i ︸             ︷︷             ︸
=0

≈
∑
�∈E 

/
upw
8, 9, ,�

D8, 9, ,� − / 9, 
∑
�∈E 

D8, 9, ,�, (4.23a)
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4.2.6. Discretization of boundary conditions∫
Ω

∇ · (<8v8) i =

∫
m 

<8i v8 · nm −
∫
 

<8v8 · ∇i ︸           ︷︷           ︸
=0

≈
∑
�∈E 

<
upw
8,�

E8, ,�, (4.23b)

∫
Ω

∇ ·
(
/ 9a8, 9

)
i =

∫
m 

/ 9i a8, 9 · nm −
∫
 

/ 9a8, 9 · ∇i ︸             ︷︷             ︸
=0

≈
∑
�∈E 

/
upw
8, 9, ,�

08, 9, ,�, (4.23c)

where n ,� denotes the unit normal vector on the face � oriented outward from the element  and the
symbols<upw

8,�
(C) and /upw

8, 9, ,�
(C) represent still unspecified values of the quantities<8 and / 9 on the face

�, which will be defined in Section 4.2.7.
Using the above substitutions in Equation (4.21), we obtain the following semi-discrete scheme:

| |�
=∑
9=1

#8, 9, (C)
d/ 9, (C)

dC
+

=∑
9=1

∑
�∈E 

/
upw
8, 9, ,�

(C)
(
08, 9, ,� (C) + D8, 9, ,� (C)

)
+

∑
�∈E 

<
upw
8,�

(C)E8, ,� (C)

+
=∑
9=1

©­«| |�A8, 9, (C) −
∑
�∈E 

D8, 9, ,� (C)
ª®¬/ 9, (C) = | |� 58, (C) . (4.24)

The interval [0, Cmax] is discretized with a finite set of time levels

T =
{
0 = C0 < C1 < . . . < C#C = Cmax

}
, (4.25)

where the integer #C denotes the number of time steps and ΔC: = C:+1 − C: , : ∈ {0, . . . , #C − 1} denotes
the length of the time step. In the following, we denote the values of the time-dependent functions
evaluated on the time level C: ∈ T by the superscript : .

The nonlinear semi-discrete scheme (4.24) is discretized in time using the backward Euler method
and linearized using the method of frozen coefficients. The resulting discrete scheme

| |�
ΔC:

=∑
9=1

#
:
8,9, 

(
/
:+1
9, − /:9, 

)
+

=∑
9=1

∑
�∈E 

/
upw
8, 9, ,�

(
0
:
8,9, ,� + D

:
8,9, ,�

)
+

∑
�∈E 

<
:,upw
8,�

E
:+1
8, ,�

+
=∑
9=1

©­«| |�A:8,9, −
∑
�∈E 

D
:
8,9, ,�

ª®¬/:+19, = | |� 5 :8, (4.26)

is valid for all 8 ∈ {1, . . . , =}, all elements  ∈ Kℎ , and time levels : ∈ {0, . . . , #C − 1}.
In order to use the coefficients E8, ,� from Equation (4.20) in Equation (4.26), they need to be

expressed at time C = C:+1. We linearize the nonlinear Equation (4.20) in time again using the method
of frozen coefficients

E
:+1
8, ,� =

=∑
9=1

©­«18, 9, ,�/:+19, −
∑
� ∈E 

18, 9, ,�,�/
:+1
9,�

ª®¬ +F:8, ,�, (4.27)

where the values of18, 9, ,� and18, 9, ,�,� are evaluated at the time level C: , but the superscript : is omitted
for clarity.

4.2.6 Discretization of boundary conditions

For the discretization of boundary conditions, we assume that a condition of exactly one type is given
on all boundary faces � ∈ Eext

ℎ , i.e., for all 9 ∈ {1, . . . , =}, we have either � ⊂ ΓD
9 or � ⊂ Γ

N1
9

or � ⊂ Γ
N2
9

.
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4.2.7. Upwind approximation for advective terms

According to Equation (4.4a), we can directly prescribe the value of the function / 9 on the Dirichlet
part of the boundary ΓD

9 . In the discrete formulation, we directly obtain the mean value of /:+19,� on the
boundary face � ∈ Eext

ℎ :

/
:+1
9,� =

1
|� |�−1

∫
�

/
D
9 (x, C:+1) ≡ /D

9,� (C:+1) . (4.28)

The discretization of the Neumann condition for the diffusive flux from Equation (4.4b) on the
boundary face � ∈ E leads to

E
:+1
8, ,� =

∫
�

E
N1
8

(x, C:+1) ≡ E
N1
8,�

(C:+1), (4.29)

which according to Equation (4.9) represents the numerical flux of the function v8 through the face �
in the outward normal direction with respect to the element  .

The discretization of the Neumann condition for the total flux from Equation (4.4c) on the boundary
face � ∈ E leads to

<
:,upw
8,�

E
:+1
8, ,� +

=∑
9=1

/
:+1,upw
8, 9, ,�

(
0
:
8,9, ,� + D

:
8,9, ,�

)
= &

N2
8,�

(C:+1), (4.30)

where the terms<:,upw
8,�

and /:+1,upw
8, 9, ,�

are specified in the next subsection.

4.2.7 Upwind approximation for advective terms

We can now specify the coefficients <:,upw
8,�

and /upw
8, 9, ,�

. To ensure the stability of the scheme for

advection problems, we use the upwind stabilization technique [B22]. The coefficients <:,upw
8,�

and
/
upw
8, 9, ,�

are defined based on the direction of the numerical flux of the functions v8 and a8, 9 + u8, 9 ,
respectively, through the face � ∈ Eℎ .

We use the explicit upwind scheme to define the coefficient<:,upw
8,�

as

<
:,upw
8,�

=

{
<
:
8, 1

if E:8, 1,�
≥ 0,

<
:
8, 2

otherwise,
(4.31a)

for all interior faces � ∈ E int
ℎ with � ∈ E 1

∩ E 2
, and

<
:,upw
8,�

=

{
<

D
8,� (C: ) if � ∈ Eext,in

ℎ,8
(C: ),

<
:
8, 1

otherwise,
(4.31b)

for all boundary faces � ∈ Eext
ℎ with � ∈ E 1

. The purpose of the abstract set Eext,in
ℎ,8

(C: ) ⊂ Eext
ℎ

appearing in Equation (4.31b) will be explained later.
Two schemes for the coefficient /upw

8, 9, ,�
are used in this work. In the explicit upwind scheme, it is

defined as

/
upw
8, 9, 1,�

≡ /:,upw
8, 9, 1,�

=

{
/
:
9, 1

if 0:8,9, 1,�
+ D:8,9, 1,�

≥ 0,
/
:
9, 2

otherwise,
(4.32a)

for all interior faces � ∈ E int
ℎ with � ∈ E 1

∩ E 2
, and

/
upw
8, 9, 1,�

≡ /:,upw
8, 9, 1,�

=

{
/

D
9,� (C: ) if 0:8,9, 1,�

+ D:8,9, 1,�
< 0,

/
:
9, 1

otherwise,
(4.32b)
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4.2.8. Balance conditions for interior faces

for all boundary faces � ∈ Eext
ℎ with � ∈ E 1

. Note that this scheme is symmetric, i.e.,/:,upw
8, 9, 1,�

= /
:,upw
8, 9, 2,�

.
This scheme was used also in [A72].

In the second scheme, hereafter referred to as implicit upwind scheme, the coefficient /upw
8, 9, ,�

is
defined as

/
upw
8, 9, 1,�

≡ /:+1,upw
8, 9, 1,�

=

{
/
:+1
9, 1

if 0:8,9, 1,�
+ D:8,9, 1,�

≥ 0,
2/:+19,� − /:+19, 1

otherwise,
(4.33a)

for all interior faces � ∈ E int
ℎ with � ∈ E 1

∩ E 2
, and

/
upw
8, 9, 1,�

≡ /:+1,upw
8, 9, 1,�

=

{
/

D
9,� (C:+1) if 0:8,9, 1,�

+ D:8,9, 1,�
< 0,

/
:+1
9, 1

otherwise,
(4.33b)

for all boundary faces � ∈ Eext
ℎ with � ∈ E 1

. This scheme was introduced in [A38, A149]. The
motivation for this choice is that since/ 9,� provides an approximation to themean value 1

2 (/ 9, 1
+/ 9, 2

),
then 2/ 9,� − / 9, 1

approximates / 9, 2
. Avoiding / 9, 2

in the definition of the upwinded term allows to
proceed with the hybridization procedure in MHFEM even when the terms are treated implicitly. Note
that the scheme is not symmetric, i.e., /:+1,upw

8, 9, 1,�
≠ /

:+1,upw
8, 9, 2,�

. However, it is not a conceptual problem
since MHFEM leads to systems of linear algebraic equations with non-symmetric matrices even when
the explicit upwind scheme is applied.

We assume that the values <D
8,� and /D

9,� representing the prescribed traces of the corresponding
quantities on the outer face � are available whenever they are needed according to Equations (4.31)
to (4.33). The availability of the values <D

8,� can be further configured for a particular problem via
the abstract set Eext,in

ℎ,8
(C: ) ⊂ Eext

ℎ that appears in (4.31b). In the simplest case, the set can be chosen

as Eext,in
ℎ,8

(C: ) =

{
� ∈ Eext

ℎ | EN1
8,�

(C: ) < 0
}
using a condition similar to Equation (4.32b). In case the

problem represents a coupled system of non-linear partial differential equations, the condition used
in the definition of the set may be more complicated. For example, the problem of two-phase flow in
porous media that will be described later in Section 4.3 requires the set to be chosen as Eext,in

ℎ,8
(C: ) ={

� ∈ Eext
ℎ | EN1

9,�
(C: ) < 0 for some 9 ∈ {1, 2}

}
for 8 ∈ {1, 2}, where the condition detects inflow of any of

the two phases denoted by the index 9 . See [B20] for details.

4.2.8 Balance conditions for interior faces

Using Equation (4.27) in Equation (4.26) for  ∈ Kℎ , 8 ∈ {1, . . . , =} leads to a system of = × #Kℎ

linear equations with = × (#Kℎ + #Eℎ) unknowns /:+19, and /:+19,� , where 9 ∈ {1, . . . , =},  ∈ Kℎ , � ∈ Eℎ .
Assuming that the diffusion tensorD is non-zero, the system can be closed by adding=×#E int

ℎ equations
representing balance conditions for the interior faces of the mesh and = × #Eext

ℎ equations representing
boundary conditions given by Equations (4.28) to (4.30).

Assuming zero sources on the interior faces of the mesh, the standard mass conservation law

corresponds to the local balance of the flux W8 = <8v8 +
=∑
9=1
/ 9 (a8, 9 + u8, 9 ). The balance conditions

for interior faces can be written in the discrete form as

2∑
ℓ=1

[
<
:
8, ℓ ,�

E
:+1
8, ℓ ,�

+
=∑
9=1

/
upw
8, 9, ℓ ,�

(
0
:
8,9, ℓ ,�

+ D:8,9, ℓ ,�
)]

= 0 (4.34)

for all 8 ∈ {1, . . . , =} and all interior faces � ∈ E int
ℎ such that � ∈ E 1

∩ E 2
. The following steps

depend on which upwind technique is used. In case the symmetric explicit upwind scheme given
by Equation (4.32) is used, the term

(
0
:
8,9, ℓ ,�

+ D:8,9, ℓ ,�
)
is multiplied by a common value that does
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4.2.9. Hybridization

not depend on  ℓ . Furthermore, due to Equation (4.10), the advection terms in Equation (4.34) cancel
out. Thus, the resulting conditions enforce only the balance of the diffusive flux q8 = <8v8 , which
corresponds to the scheme described in [A72]. Substituting Equation (4.27) into Equation (4.34) leads
to

2∑
ℓ=1

<
:
8, ℓ ,�


=∑
9=1

©­«18, 9, ℓ ,�/:+19, ℓ
−

∑
� ∈E ℓ

18, 9, ℓ ,�,�/
:+1
9,�

ª®¬ +F:8, ℓ ,�
 = 0 (4.35)

for all 8 ∈ {1, . . . , =} and all interior faces � ∈ E int
ℎ such that � ∈ E 1

∩ E 2
. A problem arises when

the mobility<8 is zero, which can occur, for example, when modeling a multiphase flow in situations
where one of the phases does not occur or disappears at a given location. If<:

8, ℓ ,�
= 0 for ℓ ∈ {1, 2},

then the global system of linear equations closed with Equation (4.35) is singular. Therefore, we use a
modified procedure inspired by the work of [A73, A74, A99] and proposed in [A72], and replace the
mobility<:

8, ℓ ,�
in Equation (4.35) with a common value<:,upw

8,�
for both elements, i.e.,<:,upw

8,�
=<

:
8, ℓ ,�

for ℓ ∈ {1, 2}. This allows us to eliminate the mobility <:,upw
8,�

from Equation (4.35), assuming that
<
:,upw
8,�

> 0. This leads us to balance the quantity v8 instead of the flux q8 , which we use for all values
of mobility, including<:,upw

8,�
= 0. The resulting balance equation is therefore

2∑
ℓ=1


=∑
9=1

©­«18, 9, ℓ ,�/:+19, ℓ
−

∑
� ∈E ℓ

18, 9, ℓ ,�,�/
:+1
9,�

ª®¬ +F:8, ℓ ,�
 = 0 (4.36)

for all 8 ∈ {1, . . . , =} and all interior faces � ∈ E int
ℎ such that � ∈ E 1

∩ E 2
. Note that Equation (4.36)

can be obtained alternatively by substituting Equation (4.27) into (4.10a).
In case the non-symmetric implicit upwind scheme given by Equation (4.33) is used, the balance

Equation (4.34) must be considered as a whole since the advection terms no longer cancel out. Similarly
to the above, we can replace the term<

:
8, ℓ ,�

with the common value<:,upw
8,�

for both elements to obtain
the balance condition

2∑
ℓ=1

<:,upw
8,�


=∑
9=1

©­«18, 9, ℓ ,�/:+19, ℓ
−

∑
� ∈E ℓ

18, 9, ℓ ,�,�/
:+1
9,�

ª®¬ +F:8, ℓ ,�
 +

=∑
9=1

/
upw
8, 9, ℓ ,�

(
0
:
8,9, ℓ ,�

+ D:8,9, ℓ ,�
) = 0

(4.37)
for all 8 ∈ {1, . . . , =} and all interior faces � ∈ E int

ℎ such that � ∈ E 1
∩ E 2

. The aforementioned
procedure, where the mobility <:,upw

8,�
was eliminated from the balance equation, no longer applies.

However, when the mobility<8 does not depend on the unknown variables / 9 and it is strictly positive,
the scheme still results in a non-singular system of equations and the implicit upwind scheme may be
advantageous for advection problems.

4.2.9 Hybridization

The global system of linear algebraic equations results from combining the following:

• discretization of the original PDE system: Equations (4.26) and (4.27) (= × #Kℎ equations),

• balance conditions for interior faces (= × #E int
ℎ equations): either Equation (4.36) (when using

the explicit upwind scheme Equation (4.32)) or Equation (4.37) (when using the implicit upwind
scheme Equation (4.33)),

• boundary conditions Equations (4.28) to (4.30) (= × #Eext
ℎ equations).
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4.2.9. Hybridization

Overall, we have a system of = × (#Kℎ + #Eℎ) linear equations for the same number of unknowns /:+19, ,
/
:+1
9,� , 9 ∈ {1, . . . , =},  ∈ Kℎ , � ∈ Eℎ , which can be symbolically written in the block form(

Q −R
S −T

) (
`:+1Kℎ
`:+1Eℎ

)
=

(
M
−N

)
, (4.38)

where `:+1Kℎ = [`:+1 ] ∈Kℎ , `
:+1
 = [/:+19, ]=9=1, `:+1Eℎ = [`:+1� ]� ∈Eℎ and `:+1� = [/:+19,� ]=9=1. However,

this system is unnecessarily large as we can use its block structure to further reduce the number of
equations in the problem. If the blocks Q, R, and M represent Equation (4.26), then Q is block-diagonal
and contains #Kℎ blocks of the size = × =. By computing `:+1Kℎ = Q−1(R`:+1Eℎ + M), we can eliminate
the unknowns `:+1Kℎ from the system. In the context of MHFEM, the technique is called hybridization
or static condensation [B6].

For each  ∈ Kℎ , the block of unknowns `:+1 ∈ R= can be expressed using `:+1� ∈ R= , � ∈ E as

`:+1 =
∑
� ∈E 

Q−1
 R ,�`

:+1
� + Q−1

 M , (4.39)

where Q ,R ,� ∈ R=,= , and M ∈ R= denote the blocks of the matrix Q, matrix R, and vector M ,
respectively. When the explicit upwind scheme Equation (4.32) is used, the term /

upw
8, 9, ,�

= /
:,upw
8, 9, ,�

appears in the right-hand-side block M and we can simply following Equation (4.26) to obtain

[Q ]8, 9 =
| |�
ΔC:

#
:
8,9, + | |�A:8,9, +

∑
�∈E 

(
<
:,upw
8,�

18, 9, ,� − D:8,9, ,�
)
, (4.40a)

[R ,� ]8, 9 =
∑
�∈E 

<
:,upw
8,�

18, 9, ,�,� , (4.40b)

[M ]8 = | |� 5 :8, + | |�
ΔC:

=∑
9=1

#
:
8,9, /

:
9, −

∑
�∈E 

<
:,upw
8,�

F
:
8, ,�

−
=∑
9=1

∑
�∈E 

/
:,upw
8, 9, ,�

(
0
:
8,9, ,� + D

:
8,9, ,�

)
, (4.40c)

for all 8, 9 ∈ {1, . . . , =},  ∈ Kℎ and � ∈ E . When the implicit upwind scheme Equation (4.33) is used,
the term multiplying /upw

8, 9, ,�
= /

:+1,upw
8, 9, ,�

moves to the blocks Q and R ,� . Combining Equations (4.26)
and (4.33) leads to

[Q ]8, 9 =
| |�
ΔC:

#
:
8,9, + | |�A:8,9, +

∑
�∈E 

(
<
:,upw
8,�

18, 9, ,� − D:8,9, ,� +
���0:8,9, ,� + D:8,9, ,� ���) , (4.41a)

[R ,� ]8, 9 =
∑
�∈E 

<
:,upw
8,�

18, 9, ,�,� − 2min
{
0, 0:8,9, ,� + D

:
8,9, ,�

}
, (4.41b)

[M ]8 = | |� 5 :8, + | |�
ΔC:

=∑
9=1

#
:
8,9, /

:
9, −

∑
�∈E 

<
:,upw
8,�

F
:
8, ,�, (4.41c)

for all 8, 9 ∈ {1, . . . , =},  ∈ Kℎ and � ∈ E .
Analogously, let T�,� , S�, ∈ R=,= , and N� ∈ R= denote the blocks of the matrix T, matrix S, and

vector N , respectively. The values of these blocks also depend on which upwind scheme is used. The
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4.2.9. Hybridization

explicit upwind scheme Equation (4.32) uses the balance conditions in Equation (4.36), which leads to

[T�,� ]8, 9 =
∑
 ∈Kℎ
�,� ∈E 

18, 9, ,�,� , ∀� ∈ Eℎ, (4.42a)

[S�, ]8, 9 = 18, 9, ,�, ∀ ∈ Kℎ : � ∈ E , (4.42b)

[N�]8 =
∑
 ∈Kℎ
�∈E 

F
:
8, ,�, (4.42c)

for all 8, 9 ∈ {1, . . . , =} and interior faces � ∈ E int
ℎ . The implicit upwind scheme Equation (4.33) uses the

balance conditions in Equation (4.37), which leads to

[T�,� ]8, 9 =
∑
 ∈Kℎ
�,� ∈E 

(
<
:,upw
8,�

18, 9, ,�,� − 2X�� min
{
0, 0:8,9, ,� + D

:
8,9, ,�

})
, ∀� ∈ Eℎ, (4.43a)

[S�, ]8, 9 =<
:,upw
8,�

18, 9, ,� +
���0:8,9, ,� + D:8,9, ,� ���, ∀ ∈ Kℎ : � ∈ E , (4.43b)

[N�]8 =<
:,upw
8,�

∑
 ∈Kℎ
�∈E 

F
:
8, ,�, (4.43c)

for all 8, 9 ∈ {1, . . . , =} and interior faces � ∈ E int
ℎ , where X�� represents the Kronecker delta.

Values of the blocks T�,� , S�, , and N� for boundary faces � ∈ Eext
ℎ are given by the discretized

boundary conditions:

• In case of the Dirichlet condition Equation (4.28) for some 9 ∈ {1, . . . , =} and � ∈ Eext
ℎ , the 9-th

row of S�, is zero, [T�,� ] 9, 9 = 1, and [N�] 9 = /D
9,� (C:+1).

• In case of the diffusive flux Neumann condition Equation (4.29) for some 8 ∈ {1, . . . , =}, the
8-th row of the blocks T�,� and S�, follows the same pattern as in the case of the balance
Equation (4.36) for interior faces, except the sums over mesh elements reduce to a single element
adjacent to the boundary face. Furthermore, the 8-th component of the vector N� additionally
contains the prescribed flux value EN1

8,�
(C:+1).

• In case of the total flux Neumann condition Equation (4.30) for some 8 ∈ {1, . . . , =}, the 8-th row
of the blocks T�,� and S�, follows the same pattern as in the case of the balance Equation (4.37)
for interior faces, except the sums over mesh elements reduce to a single element adjacent to
the boundary face. Furthermore, the 8-th component of the vector N� additionally contains the
prescribed flux value &N2

8,�
(C:+1).

Note that for each boundary face � ∈ Eext
ℎ there may be different types of boundary conditions

prescribed for 9 ∈ {1, . . . , =}, so the patterns of the blocks corresponding to such faces may be quite
complicated.

When the unknowns `:+1Kℎ are eliminated from Equation (4.38), we obtain the system

A`:+1Eℎ = b, (4.44)
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4.2.10. Computational algorithm

where A = T − SQ−1R and b = N + SQ−1M . The entries are given by

[A�,� ]8, 9 = [T�,� ]8, 9 −
∑
 ∈Kℎ
�,� ∈E 

[S�, Q−1
 R ,� ]8, 9 , (4.45a)

[b�]8 = [N�]8 +
∑
 ∈Kℎ
�∈E 

[S�, Q−1
 M ]8, 9 , (4.45b)

for all 8, 9 ∈ {1, . . . , =} and �, � ∈ Eℎ . The matrix A is sparse and non-singular under the assumptions
used in the derivation. Even when both tensor coefficients N and D in Equation (4.1) are symmetric,
the upwind stabilization causes the matrix A to be non-symmetric. The solution `:+1Eℎ = A−1b together
with the explicit Equation (4.39) allows to obtain all the values needed for the transition to the next
time level C = C:+1.

4.2.10 Computational algorithm

The system (4.44) together with the explicit Equation (4.39) specify how to compute the approximation
of the solution `:+1Kℎ at time C:+1 using the approximation `:Kℎ from the previous time level C: . The
procedure to obtain the approximation of the solution at time C = Cmax from the initial state at time C0
involves iterative time-stepping through all time levels C: ∈ T . The detailed procedure for computing
the numerical solution is summarized in Algorithm 2.

Algorithm 2

1. Read input data characterizing the problem, i.e., mesh Kℎ , data specifying the initial and bound-
ary conditions, and the coefficients of Equation (4.1) in the discrete form.

2. Set : = 0, C = C0 = 0.
3. Initialize / 0

9, for all 9 ∈ {1, . . . , =} and  ∈ Kℎ according to the initial condition (4.3).

4. Initialize the coefficients E08, ,� = 0 for all 8 ∈ {1, . . . , =},  ∈ Kℎ and � ∈ E .
5. While C: < Cmax:

5.1. Update the local matrices b8, 9, given in Appendix E for all 8, 9 ∈ {1, . . . , =} and  ∈ Kℎ .
5.2. Update the coefficients #:8,9, , D

:
8,9, ,� ,<

:
8, , F

:
8, ,� , 0

:
8,9, ,� , A

:
8,9, , 5

:
8, for all 8, 9 ∈ {1, . . . , =},

 ∈ Kℎ , � ∈ E .
5.3. Use Equation (4.31) to update the coefficients<:,upw

8,�
for all 8 ∈ {1, . . . , =}, � ∈ Eℎ .

5.4. If the explicit upwind scheme for advection terms is used, use Equation (4.32) to update the
coefficients /:,upw

8, 9, ,�
for all 8, 9 ∈ {1, . . . , =}, � ∈ Eℎ .

5.5. Update the local matrices R ,� using Equation (4.40b) (explicit upwind) or Equation (4.41b)
(implicit upwind), and vectors M using Equation (4.40c) (explicit upwind) or Equa-
tion (4.41c) (implicit upwind), for all  ∈ Kℎ , � ∈ E .

5.6. Construct the local matricesQ using Equation (4.40a) (explicit upwind) or Equation (4.41a)
(implicit upwind), and compute Q−1

 R ,� , Q
−1
 M for all  ∈ Kℎ , � ∈ E .

5.7. Construct the matrix A and the right-hand-side vector b in the system (4.44).
5.8. Solve the system (4.44) for = × #Eℎ unknowns /:+18,� , 8 ∈ {1, . . . , =}, � ∈ Eℎ .
5.9. Use Equation (4.39) to compute /:+18, for all 8 ∈ {1, . . . , =},  ∈ Kℎ .

5.10. Use Equation (4.27) to update the coefficients E:+18, ,� for all 8 ∈ {1, . . . , =},  ∈ Kℎ , � ∈ E .
5.11. Set C:+1 = C: + ΔC: and : B : + 1 to proceed to the next time level.

6. At time C: = Cmax we obtain the numerical solution of the given problem.
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4.3. Two-phase flow in porous media

4.3 Two-phase flow in porous media

This section summarizes the mathematical model of incompressible two-phase flow in porous media.
See [B3, B13] for details on the theory behind the model.

The two-phase incompressible flow in porousmedia can be describedmacroscopically by the system
of partial differential equations

ΦdF
m(F

mC
− dF∇ · (_F (∇?F − dFg)) = 0, (4.46a)

Φd=
m(=

mC
− d=∇ · (_= (∇?= − d=g)) = 0, (4.46b)

where Φ [-] is the material porosity,  [m2] is the material permeability, and g [ms−2] is the
gravitational acceleration vector. Subscripts U ∈ {F,=} are used to denote symbols related to the
wetting and non-wetting phase in the system, respectively. In particular, the quantities dU [kgm−3],
(U [-], _U [ms kg−1], and ?U [Pa] represent the U-phase density, saturation, mobility, and pressure,
respectively. The densities dU are assumed to be constant, themobilities are defined as _U = :A,U ((U )/`U ,
where :A,U ((U ) [-] is the relative U-phase permeability given by a specific empirical model and
`U [kgm−1 s−1] is the U-phase dynamic viscosity, and the quantities (U , ?U for U ∈ {F,=} are the
four unknown variables in Equation (4.46). The model is closed by algebraic constraints for the phase
pressures and saturations

?= − ?F = ?2 , (4.47a)
(F + (= = 1, (4.47b)

where ?2 [Pa] is the capillary pressure that is related to the wetting phase saturation (F according to
?2 = ?2 ((F), which is a formula supplied by a specific empirical model. The function ?2 ((F) must
be invertible to allow the calculation of saturation from given capillary pressure. Hence, multiple
formulations of the problem are possible by selecting different pairs of primary unknown variables,
such as {?F, ?=}, {?2 , ?=}, or {?F, (F}.

The empirical model for capillary pressure used in this work is the Brooks–Corey model [A37]

?2 ((F) = ((F,4)
− 1
_∗ ?∗, (4.48)

where ?∗ [Pa] and _∗ [-] are model parameters for given porous material, and (F,4 is the effective
saturation of the wetting phase. The effective saturation of the U-phase is defined by

(U,4 =
(U − (U,A

1 − (F,A − (=,A
(4.49)

for U ∈ {F,=}, where (U,A denotes the residual saturation of the U-phase in the material. The relative
permeabilitymodel consistent with the Brooks–Coreymodel for capillary pressure is the Burdinemodel
[A39, A40]

:A,F ((F) = ((F,4)
3+ 2

_∗ , (4.50a)

:A,= ((=) = ((=,4)2
(
1 − (1 − (=,4)

1+ 2
_∗

)
. (4.50b)

The Equation (4.46) governing the two-phase incompressible flow in porous media can be trans-
formed to the form of Equation (4.1) by taking = = 2 and setting the general coefficients appropriately
for the selected pair of primary unknown variables. Note that formulations using (F or (= as a
primary unknown are not admissible for the numerical scheme, because phase saturations may become
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4.4. Generalized McWhorter–Sunada problem

discontinuous across material interfaces in heterogeneous porous media. The {?F, ?=} formulation is
used in this work, i.e., ` = [?F, ?=]) , and the coefficients in Equation (4.1) are set as follows:

N =

(
−Φd(F

d?2
Φ

d(F
d?2

Φ
d(F
d?2

−Φd(F
d?2

)
, u =

(
0 0
0 0

)
, m =

(
_F
_C
_=
_C

)
,

D =

(
_C I 0
0 _C I

)
, w =

(
_CdF g
_Cd= g

)
, a =

(
0 0
0 0

)
, r =

(
0 0
0 0

)
, f =

(
0
0

)
, (4.51)

where _C = _F + _= and I denotes the identity tensor. The coefficients m and D are chosen based on
the approach used in [A99]. Consequently, the modified balance Equation (4.36) can be used in the
numerical scheme based on [A72] to allow solving problems with vanishing diffusion.

4.4 Generalized McWhorter–Sunada problem

In this section, we present the results of the generalized McWhorter–Sunada problem, a special case of
incompressible two-phase flow in porous media described by Equations (4.46) and (4.47) with known
semi-analytical solution [A71, A134].

The geometrical configuration of the problem and boundary conditions are shown in Figure 4.1.
The computational domain Ω ⊂ R� is a unit square in the two-dimensional case and a unit cube in the
three-dimensional case. A homogeneous porous medium is assumed in the domain and the effect of
gravity is neglected. Initially, at time C = 0, the entire domain is filled mostly with water and a small
amount of the non-wetting phase. The initial conditions are specified in terms of the reference pressure
?F = ?ref and the constant initial water saturation (F,ini, from which the remaining primary variable ?=
is calculated. The non-aqueous phase liquid (NAPL) is being injected into the domain since C = 0 until
the final time Cmax through a point source located in the origin x = 0. The volumetric rate of injection,
denoted as &0 [m� s−1], is prescribed by

&0 = &0(C) = ��C
�−2
2 , (4.52)

where � ∈ {2, 3} denotes the spatial dimension and �� [m� s−�/2] is an injection rate parameter.
As noted in [A72, B20], the boundary condition involving the point source injection cannot be

treated exactly in the numerical scheme and it must be approximated using boundary faces of the
numerical mesh adjacent to the origin x = 0. The part of the domain boundary Γ = mΩ that is used for
the approximation of the injection is illustrated in Figure 4.2 and denoted as Γin. The injection rate &0

is enforced on Γin for all C ∈ [0, Cmax] as∫
Γin

_= ∇?= · n = &0(C), (4.53)

where n is the outward unit normal vector on Γin. The boundary condition for the wetting phase on Γin
remains the same, i.e., ∇?F · n = 0.

All parameters of the benchmark problem were chosen identically to [B20]. Except for ?∗ and _∗,
they also correspond to the values used in [A72]. The values of ?∗ and _∗ used here correspond to the
drainage rather than wetting regime of the material, see [B13]. The values of all parameters used in
this work are summarized in Table 4.1.

4.4.1 Verification results

For each mesh Kℎ , we define the error �ℎ,(= = (=,ex(Cmax) − (=,ℎ (Cmax) in terms of the injected phase
saturation (= as the difference between the semi-analytical solution (=,ex and numerical solution (=,ℎ
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Figure 4.1: Setup of the computational domain for the generalized McWhorter–Sunada problem with
boundary conditions in (a) 2D and (b) 3D. Adapted from [A72].

x

y

O
Γin: NAPL injection

(a) Triangles

Γin: NAPL injection y
x

z

O

(b) Tetrahedra

Figure 4.2: Approximation of the point injection boundary condition at x = 0 on (a) triangular and (b)
tetrahedral meshes. Adapted from [A72].

on the mesh Kℎ at time Cmax. The !? norm ‖�ℎ,(= ‖? is evaluated in Ω ⊂ R� for ? ∈ {1, 2} as

‖�ℎ,(= ‖? =
©­«
∫
Ω

|�ℎ,(= (x) |
?dxª®¬

1
?

=
©­«

∑
 ∈Kℎ

∫
 

|�ℎ,(= (x) |
?dxª®¬

1
?

. (4.54)

The integrals over mesh cells  ∈ Kℎ are first transformed to integrals over the reference cell, and then
the Fubini theorem is applied to obtain one-dimensional integrals that are computed numerically using
the Gauss–Kronrod quadrature (G7–K15) with adaptive interval subdivision, which is implemented in
the C++11 library qdt [A140, O23].

Given two approximate solutions (=,ℎ1 and (=,ℎ2 on meshes Kℎ1
and Kℎ2

, respectively, the order of
convergence of the numerical scheme with respect to (= in the !? norm can be approximated using an
experimental order of convergence as

�$�(=,? =
ln‖�ℎ1,(= ‖? − ln‖�ℎ2,(= ‖?

lnℎ1 − lnℎ2
. (4.55)
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4.4.1. Verification results

Table 4.1: Parameters of the mathematical model used in the generalized McWhorter–Sunada problem.

Parameter Symbol Value Unit

Material porosity Φ 0.343
Material permeability  5.168 × 10−12m2

Brooks–Corey model parameter ?∗ 8027.52 Pa
Brooks–Corey model parameter _∗ 5.408
Residual saturation – wetting phase (F,A 0.04

– non-wetting phase (=,A 0

Fluid density – wetting phase dF 103 kgm−3

– non-wetting phase d= 1.4 × 103 kgm−3

Dynamic viscosity – wetting phase `F 10−3 kgm−1 s−1

– non-wetting phase `= 10−3 kgm−1 s−1

Gravitational acceleration g 0 ms−2

Reference pressure ?ref 105 Pa
Initial wetting phase saturation (F,ini 0.95
Injection rate parameter – 2D case �2 10−5 m2 s−1

– 3D case �3 10−7 m3 s−3/2

Final time Cmax 2 × 104 s

Table 4.2: Results of the numerical analysis using the !1 and !2 norms of �ℎ,(= for the 2D problem on a
series of triangular discretizations.

Id. ℎ [m] g [s] ‖�ℎ,(= ‖1 �$�(=,1 ‖�ℎ,(= ‖2 �$�(=,2

2D4
1 6.71 × 10−2 454.55 1.54 × 10−2 3.25 × 10−2

2D4
2 3.49 × 10−2 145.99 8.14 × 10−3 0.97 1.89 × 10−2 0.84

2D4
3 1.64 × 10−2 44.64 4.44 × 10−3 0.80 1.19 × 10−2 0.61

2D4
4 8.73 × 10−3 13.44 2.41 × 10−3 0.97 7.79 × 10−3 0.67

2D4
5 4.23 × 10−3 5.00 1.29 × 10−3 0.86 4.90 × 10−3 0.64

Table 4.3: Results of the numerical analysis using the !1 and !2 norms of �ℎ,(= for the 3D problem on a
series of tetrahedral discretizations.

Id. ℎ [m] g [s] ‖�ℎ,(= ‖1 �$�(=,1 ‖�ℎ,(= ‖2 �$�(=,2

3D4
1 2.13 × 10−1 833.33 1.15 × 10−2 3.48 × 10−2

3D4
2 1.27 × 10−1 571.43 8.02 × 10−3 0.69 2.52 × 10−2 0.62

3D4
3 6.29 × 10−2 232.56 4.41 × 10−3 0.86 1.49 × 10−2 0.75

3D4
4 3.48 × 10−2 101.01 2.40 × 10−3 1.03 8.62 × 10−3 0.93

3D4
5 1.84 × 10−2 25.00 1.26 × 10−3 1.01 5.48 × 10−3 0.71

In order to investigate the convergence and accuracy of the numerical scheme using the experimen-
tal order of convergence, several simulations were computed on a series of triangular and tetrahedral
meshes. The meshes are the same as those used in [A72] and their properties are listed in Table 2.2. All
simulations were computed in double precision. Tables 4.2 and 4.3 show the resulting !1 and !2 norms
of the error, the corresponding experimental orders of convergence, as well as the mesh size parameters
ℎ and constant time steps g that were used in the simulations. The results of the numerical analysis
indicate that the scheme converges with the first order of accuracy in both dimensions and both norms.
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4.5. Benchmarking methodology

4.5 Benchmarking methodology

The generalized McWhorter–Sunada problemwas computed as a benchmark for several configurations
of the solver. All configurations were tested on the triangular as well as tetrahedral meshes with
the same problem parameters as in the verification study described in the previous subsection. The
computational parameters that varied in the benchmark are:

• Linear system solver. First, we used the BiCGstab method implemented in TNL with the Jacobi
preconditioner. Additionally, we used the BoomerAMG preconditioner [A184] from the Hypre
library [C15, C19, C20] version 2.25.0 together with the BiCGstab method implemented in the
Hypre library. Some other components of the solver also had to be changed due to compatibility
with these two different BiCGstab implementations. While the TNL implementation is not bound
to any specific matrix format and the Ellpack format was used in the solver, the Hypre library
requires the CSR format with specific conventions (see Section 3.4 for details). Hence, the sparse
matrix assembly uses slightly different procedures in the two configurations.

• Hardware architecture. The benchmark was computed either solely on CPUs, or using GPU
accelerators. In the latter case, all parts of theMHFEM algorithmwere executed directly onGPUs,
so data transfers between the GPU and main system memory do not limit the performance. Both
TNL and Hypre rely on the CUDA framework [M19] for GPU parallelization and they use the
so-called CUDA-aware MPI [O18] to avoid buffering of the data passed between multiple GPUs
in the system memory.

• Programming framework for CPU parallelization. For the TNL implementation, we tested two ap-
proaches to CPU parallelization within a single node. We used the shared-memory multi-thread
approach via the OpenMP framework [A51] and also the general multi-process approach based
on MPI [M15]. The Hypre implementation was used only with the MPI-based parallelization.

To ensure comparable results obtained with different preconditioners for the BiCGstab method,
care must be taken to select suitable stopping criteria for the iterative algorithm. The linear system
solvers implemented in TNL use left-preconditioning, whereas the Hypre library implements solvers
with right-preconditioning (see Chapter 3 for details). Recall that right-preconditionedmethods operate
with the original residual and right-hand-side vectors, whereas left-preconditioned methods operate
with preconditioned residual and right-hand-side vectors. Hence, assuming the Jacobi preconditioner,
the right-hand-side vector is scaled with the matrix diagonal entries during left-preconditioning and
the stopping criterion based on the norm of the residual vector divided by the norm of the right-hand-
side vector cannot be used with the same threshold as for the unpreconditioned or right-preconditioned
system. To remedy this problem, we assemble the linear system with scaled rows to obtain ones on
the main diagonal of the matrix (i.e., the Jacobi preconditioning is applied during the matrix assembly).
This scales the elements of the right-hand-side vector to the same magnitude in both preconditioning
techniques and allows the stopping criterion to be used with the same threshold (10−11 in this study).

Besides the stopping criterion, the BiCGstab method requires no other configuration. The following
common parameters were set for the BoomerAMG preconditioner:

• The PDE system size (i.e., = in Equation (4.1)) was set to 2:
HYPRE_BoomerAMGSetNumFunctions( precond, 2 );

• Aggressive coarsening with 1 level: HYPRE_BoomerAMGSetAggNumLevels( precond, 1 );

• For both 2D and 3D problems, the strength threshold was set to 0.25:
HYPRE_BoomerAMGSetStrongThreshold( precond, 0.25 );

• The extended+i interpolation operator with truncation to at most 4 elements per row
HYPRE_BoomerAMGSetInterpType( precond, 6 ); and HYPRE_BoomerAMGSetPMaxElmts( precond, 4 );
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4.6. Computational benchmark results

Additionally, the following parameters were set for CPU computations:

• The HMIS coarsening algorithm: HYPRE_BoomerAMGSetCoarsenType( precond, 10 );

• The ℓ1-scaled hybrid symmetric Gauss–Seidel smoother:
HYPRE_BoomerAMGSetRelaxType( precond, 8 );

• The truncation factor for the interpolation was set to 0.3:
HYPRE_BoomerAMGSetTruncFactor( precond, 0.3 );

The following parameters were set specifically for GPU computations:

• The PMIS coarsening algorithm: HYPRE_BoomerAMGSetCoarsenType( precond, 8 );

• The ℓ1-scaled Jacobi smoother: HYPRE_BoomerAMGSetRelaxType( precond, 18 );

• The 2-stage extended+e interpolation in matrix-matrix form was used on the levels of aggressive
coarsening: HYPRE_BoomerAMGSetAggInterpType( precond, 7 );

• The local interpolation transposes were saved to avoid sparse matrix–transpose–vector multipli-
cations: HYPRE_BoomerAMGSetKeepTranspose( precond, 1 );

• The triple matrix product RAP was replaced by two matrix products:
HYPRE_BoomerAMGSetRAP2( precond, 1 );

There are many other configurable parameters listed in the Hypre documentation [O10] that might
have an effect on the performance, but they were not investigated in this benchmark.

To reduce the computational time with the Hypre implementation, the BoomerAMG preconditioner
is not updated in every time step and instead its setup is reused multiple times as long as the number of
iterations necessary for the BiCGstab method to converge does not increase significantly. The specific
heuristics used is that the preconditioner is reused, as long as the number of iterations needed in the
previous time step is less then 5 plus the number of iterations needed when the preconditioner was last
updated.

The computations were performed on the same hardware as described in Section 2.2.7, and also
the software versions and compiler parameters were the same. The MPI version is OpenMPI 4.0.5
with CUDA support and system-specific drivers. Each computation was performed exactly once and
the times spent in individual parts of the algorithm were measured. The computational time �) was
measured since the solver was fully initialized until the final simulation time was reached.

The secondary quantities of interest for the evaluation of parallel computations are speed-up (? ,
which is defined as the ratio between computational times using 1 and ℓ compute units (e.g., CPU
cores), and parallel efficiency �55 , which quantifies the scalability of the computation and is defined as
the ratio between the speed-up and the number of compute units, i.e.

�55 =
�) for 1 unit

ℓ × (�) for ℓ units) .

In case of GPU computations, the speed-up and efficiency are calculated relative to the number of whole
GPUs rather than the number of individual GPU cores, because the GPU cores are not independent.

4.6 Computational benchmark results

The benchmark results are presented as strong scaling studies for the finest triangular mesh 2D4
5 and

finest tetrahedral mesh 3D4
5 . Table 4.4 shows the CPU computational times �) and parallel efficiency

�55 for the 2D problem. The computational times of the TNL solver using OpenMP and MPI are
comparable, but the latter is faster in most cases. The OpenMP efficiency even drops below 0.5 when
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4.6. Computational benchmark results

Table 4.4: Comparison of CPU computational times�) [s], speed-up (? , and parallel efficiency �55 for
the generalized McWhorter–Sunada problem computed on the finest triangular mesh 2D4

5 .

TNL Hypre

OpenMP MPI MPI

Cores �) (? �55 �) (? �55 �) (? �55

1 10743.9 1.0 1.00 10800.2 1.0 1.00 3510.1 1.0 1.00
2 6349.0 1.7 0.85 5693.5 1.9 0.95 2058.0 1.7 0.85
4 3375.9 3.2 0.80 3143.0 3.4 0.86 1097.1 3.2 0.80
6 2294.6 4.7 0.78 2506.0 4.3 0.72 750.5 4.7 0.78
8 1818.1 5.9 0.74 1787.6 6.0 0.76 587.6 6.0 0.75
12 1296.2 8.3 0.69 1096.8 9.8 0.82 424.8 8.3 0.69
24 977.0 11.0 0.46 549.3 19.7 0.82 215.5 16.3 0.68

all 24 cores of the two processors on a cluster node are used, which is most likely caused by inefficient
memory allocations in the NUMA system and excessive communication over the interconnection
between the processors. The Hypre computations are faster than TNL by a factor of 2.5 to 3, which
manifests the importance of a strong preconditioner. The linear systems arising from the 2D problem
took the Jacobi-preconditioned BiCGstab method more than 500 iterations on average to converge,
whereas the BoomerAMG-preconditioned BiCGstab converged after just 23 iterations on average.

The results of CPU computations for the 3D problem are shown in Table 4.5. For a single node (up
to 24 cores), the results are analogous to the 2D problem, except the differences between the methods
are much larger. For TNL computations, the OpenMP and MPI results are comparable only for 1 core
(i.e., sequential computation) and MPI is significantly faster than OpenMP in all other cases. This is
surprising, because OpenMP operates on the shared memory level whereas the MPI approach is based
onmessages explicitly passed between the processes, but it demonstrates that a simple and user-friendly
programming interfacemay incur significant performance penalty that is hard to analyze and eliminate.
The Hypre computations exhibit parallel efficiency similar to the MPI-based TNL computations, but
the computational times are almost 5 times shorter. The linear systems arising from the 3D problem
took the Jacobi-preconditioned BiCGstab about 530 iterations on average to converge, whereas the
BoomerAMG-preconditioned BiCGstab converged after just 17 iterations on average.

Additionally, Table 4.5 includes results of CPU computations distributed across multiple nodes
using MPI. The computational cluster used for the computations consists of 20 dual-processor nodes
containing CPUs listed in Table 2.1, but only 14 nodes at most could be employed together in one MPI
computation. It can be noticed that while the parallel efficiency with respect to 1 core dropped down
to about 0.65 on 24 cores, which is caused by the saturation of the memory bandwidth and automatic
CPU core frequency scaling, it stays on this level or even increases slightly when multiple nodes are
utilized for the computation. This increase in efficiency may be attributed to the increasing total cache
size and the problem size staying constant in the strong scaling study. Using Hypre for the solution of
the linear systems lead to lower parallel efficiency compared to the simple Jacobi preconditioner used
in TNL computations, which is an inevitable consequence of more complex communication patterns
during preconditioning. Even for the computations using the most nodes, Hypre is more than 4 times
faster than TNL.TheHypre library provides state–of–the–art linear system solvers and preconditioners
targetting contemporary supercomputers consisting of thousands of nodes, but much larger problems
would be necessary to efficiently utilize these computational resources.

The results of GPU computations for both 2D and 3D problems are shown in Table 4.6. Note
that each MPI rank manages its dedicated GPU, so each computation used as many GPUs as there
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4.6. Computational benchmark results

Table 4.5: Comparison of CPU computational times�) [s], speed-up (? , and parallel efficiency �55 for
the generalized McWhorter–Sunada problem computed on the finest tetrahedral mesh 3D4

5 .

TNL Hypre

OpenMP MPI MPI

Cores CPUs Nodes �) (? �55 �) (? �55 �) (? �55

1 188243.0 1.0 1.00 188706.0 1.0 1.00 37991.2 1.0 1.00
2 102074.0 1.8 0.92 93659.1 2.0 1.01 21170.2 1.8 0.90
4 55937.6 3.4 0.84 49553.0 3.8 0.95 11252.2 3.4 0.84
6 40796.4 4.6 0.77 35594.3 5.3 0.88 7798.1 4.9 0.81
8 32026.3 5.9 0.73 28958.6 6.5 0.81 6085.4 6.2 0.78
12 1 1/2 26369.7 7.1 0.59 23839.0 7.9 0.66 4708.8 8.1 0.67
24 2 1 15695.0 12.0 0.50 12184.2 15.5 0.65 2485.0 15.3 0.64
48 4 2 6029.0 31.3 0.65 1249.1 30.4 0.63
72 6 3 4054.7 46.5 0.65 880.2 43.2 0.60
96 8 4 2974.5 63.4 0.66 592.3 64.1 0.67
120 10 5 2483.0 76.0 0.63 471.2 80.6 0.67
144 12 6 2000.0 94.4 0.66 415.8 91.4 0.63
168 14 7 1607.7 117.4 0.70 372.2 102.1 0.61
192 16 8 1380.4 136.7 0.71 310.7 122.3 0.64
216 18 9 1209.6 156.0 0.72 277.5 136.9 0.63
240 20 10 1082.0 174.4 0.73 240.3 158.1 0.66
264 22 11 974.9 193.6 0.73 251.5 151.0 0.57
288 24 12 892.5 211.4 0.73 223.9 169.7 0.59
312 26 13 901.8 209.3 0.67 202.9 187.2 0.60
336 28 14 851.9 221.5 0.66 201.9 188.2 0.56

were MPI ranks. It can be noticed that in the 2D case, using multiple GPUs does not lead to faster
computations (the speed-ups (? for the mesh 2D4

5 are less than 1). This can be attributed to the
latency of communication between multiple GPUs, which is high compared to the actual computation,
because the triangular meshes used in the benchmark do not provide enough degrees of freedom to
fully utilize the computational power of the GPUs. On the other hand, the tetrahedral meshes used in
the benchmark provide more degrees of freedom, so the speed-ups (? for the mesh 3D4

5 rise above 1.
Comparing the GPU computational times from Table 4.6 with the corresponding CPU computations
from Tables 4.4 and 4.5, it can be seen that using GPU acceleration brings significant advantage for the
simple Jacobi preconditioner in TNL, but not so significant for the BoomerAMG preconditioner from
the Hypre library. For the TNL solver and the 3D problem, using 1 GPU leads to a faster computational
time than when using 8 CPUs (4 nodes) and at least 32 CPUs (16 nodes) are necessary for a faster
computational time than when using 4 GPUs. The GPU computations with Hypre are only slightly
faster than TNL computations, only 2 CPUs (1 node) are necessary for Hypre to be competitive with
1 GPU and using Hypre on 8 CPUs (4 nodes) is faster than the fastest computation using 4 GPUs.

The final result shown in this section is the breakdown of the overall computational times from Ta-
ble 4.5 on the finest tetrahedral mesh 3D4

5 . In Tables 4.7 and 4.8 it can be observed that regardless of the
preconditioner used, the major portion (over 90 %) corresponds to the linear system solver (BiCGstab)
rather than operations involving the unstructured mesh. Recall that the BoomerAMG preconditioner
is not updated in every time step, so its contribution to the total computational time stays below
1%. The other entries in the tables correspond to various operations for the MHFEM discretization
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Table 4.6: Comparison of GPU computational times�) [s], speed-up (? , and parallel efficiency �55 for
the generalizedMcWhorter–Sunada problem computed on the finest triangular and tetrahedral meshes.
Each MPI rank manages its dedicated GPU.

TNL Hypre

2D4
5 3D4

5 2D4
5 3D4

5

GPUs �) (? �55 �) (? �55 �) (? �55 �) (? �55

1 528.6 1.0 1.00 2654.8 1.0 1.00 389.8 1.0 1.00 2014.5 1.0 1.00
2 566.1 0.9 0.47 1415.4 1.9 0.94 500.6 0.8 0.39 1233.1 1.6 0.82
3 642.5 0.8 0.27 996.7 2.7 0.89 634.1 0.6 0.20 868.9 2.3 0.77
4 709.7 0.7 0.19 793.3 3.3 0.84 726.8 0.5 0.13 704.2 2.9 0.72

Table 4.7: Comparison of the portions contributing to the total CPU computational times�) [s] for the
generalizedMcWhorter–Sunada problem computed on the finest tetrahedral mesh 3D4

5 using BiCGstab
from TNL as the linear system solver. All values are average times of all MPI ranks.

Number of MPI ranks 12 24 48 96 192 288 336

MHFEM routines 0.9 % 0.9 % 1.0 % 1.0 % 1.1 % 1.1 % 1.0 %
MPI communication of mesh data 0.0 % 0.0 % 0.1 % 0.1 % 0.1 % 0.2 % 0.2 %
Sparse matrix assembly 0.7 % 0.6 % 0.6 % 0.6 % 0.6 % 0.6 % 0.5 %
Linear system solver (compute) 94.1 % 90.0 % 89.6 % 85.6 % 80.1 % 74.3 % 65.0 %
Linear system solver (MPI sync.) 4.3 % 8.4 % 8.7 % 12.7 % 18.1 % 23.8 % 33.3 %
Total 23839 s 12184 s 6029 s 2974 s 1380 s 893 s 852 s

Table 4.8: Comparison of the portions contributing to the total CPU computational times �) [s] for
the generalized McWhorter–Sunada problem computed on the finest tetrahedral mesh 3D4

5 using
BoomerAMG-preconditioned BiCGstab from the Hypre library as the linear system solver. All values
are average times of all MPI ranks.

Number of MPI ranks 12 24 48 96 192 288 336

MHFEM routines 4.8 % 4.6 % 4.6 % 4.8 % 4.6 % 4.3 % 4.1 %
MPI communication of mesh data 0.1 % 0.2 % 0.3 % 0.3 % 0.4 % 1.0 % 1.1 %
Sparse matrix assembly 3.5 % 3.2 % 3.1 % 3.2 % 2.9 % 2.6 % 2.4 %
BoomerAMG update 0.4 % 0.4 % 0.4 % 0.5 % 0.5 % 0.8 % 0.8 %
Linear system solver 91.1 % 91.5 % 91.6 % 91.2 % 91.5 % 91.3 % 91.6 %
Total 4709 s 2485 s 1249 s 592 s 311 s 224 s 202 s

(MHFEM routines), data synchronizations in the ghost regions with DistributedMeshSynchronizer (MPI
communication of mesh data), and the sparse matrix assembly. The MHFEM routines involve the same
operations in both TNL and Hypre implementations and thus take the same time, but they are relatively
more significant in the Hypre implementation where the linear system solver is faster. The sparse
matrix assembly for Hypre takes slightly longer time than for TNL, but it is still faster than the MHFEM
routines. Note that the linear system solver also includes a considerable amount of MPI communication
which is segregated in its own contribution in Table 4.7, but included in the linear system solver entry
in Table 4.8.
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Chapter 5

Lattice Boltzmann Method

This chapter is dedicated to the lattice Boltzmann method (LBM), a popular numerical approach for
the simulation of fluid flow [B21], chemical or thermal transport [A52, A155], radiative transport
[A135, A136], and other problems. The method can be easily and efficiently parallelized [B21] and
the advent of general-purpose computing on graphics processing units (GPGPU) made large-scale and
highly resolved numerical simulations of turbulent flows feasible [A84, A106, A118, A147, A181, A188].

The content of the chapter focuses on the implementation of the method and performance opti-
mizations for distributed parallel computing platforms, which is the author’s contribution within the
research group. Hence, LBM is described with the objective to formulate the computational algorithm
and details such as rigorous derivation of the method are omitted. The LBM implementation used in
this work was developed, analyzed and validated in [A23, A63, A64, A68–A70, A75].

The chapter is organized as follows. First, the background of the method in the kinetic theory of
gases is described in Section 5.1 and its components are introduced in Section 5.2. The following Sec-
tion 5.3 describes the streaming schemes and the computational algorithm is formulated in Section 5.4
in several variants leading to the scalable distributed algorithm. Section 5.5 provides insights into the
implementation and Section 5.6 describes important performance optimizations. The final Section 5.7
contains the results of several computational benchmarks, including strong and weak scaling studies
on the Karolina supercomputer [O15].

5.1 Background

The lattice Boltzmann method [B21] (LBM) is an alternative to traditional computational methods
such as finite difference, finite volume, and finite element methods. Instead of directly solving a
macroscopic PDE, such as the Navier–Stokes equations or a general advection-diffusion equation, LBM
approximates the temporal evolution of macroscopic quantities such as density d [kgm−3], velocity
v [ms−1], and other variables (e.g., pressure, stress tensor, etc.) using probability moments of the
density distribution function 5 (x, / , C) [kg s3m−6] that represents the density of particles with velocity
/ = [bG , b~, bI]) [ms−1] at position x and time C . Based on the kinetic theory [B21], the density
distribution function 5 evolves according to the Boltzmann transport equation

m5

mC
+

3∑
8=1

b8
m5

mG8
+

3∑
8=1

�8

d

m5

mb8
= C, (5.1)

where d [kgm−3] is the mass density, L = [�G , �~, �I]) [Nm−3] represents the external body force
density acting on the mass and C [kg s2m−6] denotes a general collision operator that depends on the
distribution function and other parameters (e.g., relaxation times and equilibrium distribution). LBM
follows from the discretization of Equation (5.1) in space, velocity space, and time.
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5.2 Components of the method

Thedetailed derivation of LBM is not within the scope of this thesis. Instead, we review the components
needed to describe the implementation of the method and refer the reader to [B21] for further details.

5.2.1 Lattice and velocity set

We consider the discretization of a cuboidal domain Ω ⊂ R3 using an equidistant orthogonal grid
represented by a finite set GΩ of grid nodes. The extended grid GΩ consists of the interior nodes from
GΩ and an additional outer layer of nodes, which is added to facilitate the discretization of the domain
boundary. The Cartesian coordinates of grid nodes are defined as x8, 9,: = [8XG +$G , 9XG +$~, :XG +$I]) ,
where XG [m] is the grid spacing parameter and U = [$G ,$~,$I]) [m] is an offset vector that allows
to fit the grid nodes to the physical coordinates of the domain. The sets GΩ and GΩ of interior and all
grid nodes, respectively, are defined by specifying the indices 8, 9, : for the points x8, 9,: as

GΩ = {x8, 9,: ∈ Ω | 8 ∈ {1, . . . , #G − 2}, 9 ∈ {1, . . . , #~ − 2}, : ∈ {1, . . . , #I − 2}}, (5.2a)

GΩ = {x8, 9,: | 8 ∈ {0, . . . , #G − 1}, 9 ∈ {0, . . . , #~ − 1}, : ∈ {0, . . . , #I − 1}}, (5.2b)

where the integers #G , #~, #I determine the numbers of grid nodes along the G , ~, and I axes,
respectively. To avoid mixing different unit systems, we also define a non-dimensional lattice LΩ and
extended lattice LΩ as

LΩ = {ΔG [8, 9, :]) | 8 ∈ {1, . . . , #G − 2}, 9 ∈ {1, . . . , #~ − 2}, : ∈ {1, . . . , #I − 2}}, (5.3a)

LΩ = {ΔG [8, 9, :]) | 8 ∈ {0, . . . , #G − 1}, 9 ∈ {0, . . . , #~ − 1}, : ∈ {0, . . . , #I − 1}}, (5.3b)

where ΔG is the lattice spacing parameter that we set to ΔG = 1 as usual in the LBM community [B21].
Note that a grid node x8, 9,: represents the same point in space as the corresponding lattice site
ΔG [8, 9, :]) , but in different unit systems. Hence, we will use the notation x ∈ GΩ to refer to a point
using its physical coordinates and x ∈ LΩ to refer to its lattice coordinates.

Similarly to the space discretization, the time interval [0, Cmax] is discretized by a finite set GC =

{ℓXC | ℓ ∈ {0, . . . , #C }}, where XC = Cmax/#C [s] is the time step in physical units and #C is the number
of time steps. The set of non-dimensional time levels is denoted as LC = {ℓΔC | ℓ ∈ {0, . . . , #C }}, where
ΔC = 1 is the non-dimensional time step.

The next step in the discretization of the Boltzmann transport equation (5.1) is the selection of an
appropriate discrete velocity set. The velocity sets are typically named as D�Q& , where � stands for
the spatial dimension and& denotes the number of discrete velocities per lattice site. Themost common
examples are D1Q3, D2Q5, D2Q9, D3Q7, D3Q15, D3Q19, and D3Q27. Not all velocity sets are suitable
for accurate resolution of the desired macroscopic equation [A68, A75, B21]. In this thesis, we aim to
use LBM for the solution of the Navier–Stokes equations in R3 and thus consider the D3Q27 velocity
set consisting of & = 27 discrete velocities.

A velocity set for LBM is fully defined by two sets of quantities: lattice velocities /@ and the
corresponding weights F@ for @ ∈ {1, . . . , &}. All vectors /@ in all aforementioned velocity sets have
components in {−2, 0, 2}, where 2 = ΔG/ΔC is the lattice speed. Another important quantity that can
be derived from these two sets is the lattice speed of sound 2B . The aforementioned velocity sets can
be derived using the Gauss–Hermite quadrature [B21, Appendix A.4]. Another approach explained
in [B21, Section 3.4.7.2] is to determine the weights by solving the system of equations representing
general conditions that ensure rotational isotropy of the lattice. The Python script in Appendix F can
be used to quickly verify the consistency of discrete velocities, weights and the speed of sound for a
given velocity set, or even to obtain the necessary conditions when designing a new velocity set.
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5.2.2 Discrete lattice Boltzmann equation

Before discretization, Equation (5.1) is first transformed to a non-dimensional form by scaling the
physical quantities based on a characteristic length, time and density [B21]. For the purpose of
lattice computations, a system of lattice units is defined by selecting XG , XC and d0 (i.e., density of an
incompressible fluid) as the conversion factors. In lattice units, we set the space step as ΔG = 1, the
time step as ΔC = 1, and the average density d̂0 = 1.

The discretization of Equation (5.1) in velocity space (using a velocity set), space (using a lattice)
and time (using a discrete set of time levels) leads to the lattice Boltzmann equation

5@ (x + ΔC/@, C + ΔC) − 5@ (x, C) = ΔC
(
C@ (x, C) + S@ (x, C)

)
(5.4)

for all @ ∈ {1, . . . , &}, x ∈ LΩ , and C ∈ LC . In Equation (5.4), 5@ = 5@ (x, C) is the discrete density
distribution functions corresponding to the microscopic velocity /@ , C@ is the discrete collision operator
and S@ is the discrete source term. Note that the collision operator C@ depends on the whole set of &
discrete density distribution functions (i.e., the & equations written in (5.4) are not independent).

Similarly to the continuous case, moments of the discrete density distribution functions 5@ are
of interest as they allow to recover the macroscopic quantities. The scheme for the approximation
of the Navier–Stokes equations is constructed such that the conserved moments correspond to the
macroscopic density d , which can be obtained in lattice units in LΩ × LC by

d (x, C) =
&∑
@=1

5@ (x, C) (5.5)

and the macroscopic momentum density dv, which can be computed in lattice units as

d (x, C)v (x, C) =
&∑
@=1

5@ (x, C)/@ +
1
2
ΔC L̂ (x, C), (5.6)

where L̂ denotes the external force density in lattice units exerted on the fluid. The macroscopic
velocity v can be obtained by dividing the macroscopic momentum density dv by the macroscopic mass
density d . Other macroscopic quantities, such as the stress tensor, can be obtained from higher-order,
non-conserved moments of the distribution functions [B21].

5.2.3 Collision operator

The term C@ in Equation (5.4) denotes the discrete collision operator; in this thesis we use the cumulant
operator proposed in [A84]. The operator has several parameters that drive the relaxation rates of
different cumulants towards their equilibria. The relaxation rate l1 is linked to the kinematic viscosity
a in the Navier–Stokes equations via

a = 2
2
B

(
1
l1

− ΔC

2

)
X
2
G

XC
. (5.7)

The other relaxation rates are set as suggested by the authors of the original paper, including the limiters
proposed in [A81, A82]. Furthermore, the approximations of the spatial velocity derivatives to reduce
the artifacts due to the absence of higher-order cumulants are also incorporated in the collision operator
according to [A81, A82].
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5.2.4 Equilibrium function

In the kinetic theory of gases, the Maxwell–Boltzmann distribution 5 eq(x, |v |, C) describes the speeds of
particles in an ideal gas moving with a macroscopic velocity v in a thermodynamic equilibrium [B21].
In the derivation of the discrete lattice Boltzmann equation, the equilibrium distribution function 5 eq is
discretized to obtain an approximation of the equilibrium state for the given discrete velocity set. The
discrete equilibrium distribution function 5 eq@ for the cumulant collision operator can be derived in the
space of cumulants following [A84].

5.2.5 Boundary conditions

The formulation of proper boundary conditions for LBM is a major complication in its applications,
since the desired macroscopic conditions (e.g., given in terms of d and v) must be reproduced on
the mesoscopic level using the discrete density distribution functions 5@ [B21]. This problem does
not have a unique solution and thus multiple boundary schemes for LBM exist that approximate the
same macroscopic condition. As of this writing, the LBM implementation used by the author contains
elementary boundary conditions based on the wet-node equilibrium approach for inflow [A93, B21,
A121, A139], extrapolation method for outflow, and full-way bounce-back scheme for solid walls [B21].
Since the analysis of boundary conditions is not within the scope of this thesis, the details are omitted.

5.2.6 Initialization

The simplest initialization approach, which is used in this work, is to set the discrete density distribution
functions at C = 0 to their equilibria according to the supplied macroscopic density and velocity using

5@ (x, 0) = 5
eq
@ (d (x, 0), v (x, 0)) (5.8)

for all lattice sites x ∈ LΩ and @ ∈ {1, . . . , &}. Unless noted otherwise, the values d (x, 0) = d̂0 and
v (x, 0) = 0 are used. Different initialization schemes can be found in [B21].

5.3 Streaming schemes

5.3.1 Push and pull schemes with A-B pattern

Based on Equation (5.4), the computational steps needed to evolve the state from the current time C to
the next time level C + ΔC can be decomposed into two successive steps:

1. The collision step:

5
∗
@ (x, C) = 5@ (x, C) + ΔC

(
C@ (x, C) + S@ (x, C)

)
, ∀@ ∈ {1, . . . , &}, (5.9a)

where 5 ∗@ denotes the value of the distribution function after collision in the given lattice site.

2. The streaming step:

5@ (x + ΔC/@, C + ΔC) = 5 ∗@ (x, C), ∀@ ∈ {1, . . . , &}, (5.9b)

where the post-collision distribution function 5 ∗@ is propagated to the neighboring lattice site in
the direction of the corresponding velocity /@ .

This scheme is called the push scheme, since the streaming step propagates the values from the reference
lattice site x ∈ LΩ to its neighbors. As these two steps alternate in a time loop, it essentially does not
matter if the time step is formulated to start with the collision step or the streaming step. The alternative,
yet equivalent scheme can be formulated as:
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5.3.1. Push and pull schemes with A-B pattern

(a) Values read from the global

memory (array A)

(b) Values stored in the registers (c) Values stored into the global

memory (array B)

Figure 5.1: Illustration of the push streaming scheme with the A-B pattern.

(a) Values read from the global

memory (array A)

(b) Values stored in the registers (c) Values stored into the global

memory (array B)

Figure 5.2: Illustration of the pull streaming scheme with the A-B pattern.

1. The streaming step:

5@ (x, C) = 5 ∗@ (x − ΔC/@, C − ΔC), ∀@ ∈ {1, . . . , &}, (5.10a)

where the post-collision distribution function 5 ∗@ is propagated from the neighboring lattice site
in the direction of −/@ from the previous time level.

2. The collision step:

5
∗
@ (x, C) = 5@ (x, C) + ΔC

(
C@ (x, C) + S@ (x, C)

)
, ∀@ ∈ {1, . . . , &}, (5.10b)

where 5 ∗@ denotes the value of the distribution function after collision in the given lattice site.

This scheme is called the pull scheme, since the streaming step propagates the values to the reference
lattice site x ∈ LΩ from its neighbors. The visualization of the difference between the push and pull
streaming schemes is illustrated in Figures 5.1 and 5.2 for a D2Q9 velocity set.

Note that regardless of the chosen streaming scheme, the collision step is local in terms of the lattice
sites x ∈ LΩ (i.e., collisions in different lattice sites are independent of each other), but collective for all
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@ ∈ {1, . . . , &} since the collision operator C@ depends on the whole set of discrete density distribution
functions in given lattice site. On the other hand, the operations in the streaming step are non-local, but
trivial as they do not require any computation (the post-collision values are merely transferred from
one place to another).

Both the push and pull schemes require attention during the implementation to avoid overwriting
memory locations containing values that may be needed in the future. In the former scheme, the values
of 5@ at C + ΔC cannot be pushed to the neighboring lattice sites overwriting the values at current time
level C , because the neighboring nodes may be still unprocessed in this time step. Similarly, after the
collision step in the pull scheme, the values of 5 ∗@ cannot overwrite the values of 5@ in the reference
lattice site, because those values may be pulled later when processing neighboring nodes in the same
time step. Hence, the classical implementation of LBM based on the push or pull scheme requires the
use of two arrays for storing the state of the simulated system. In each time step, an array A is used for
input and array B is used for output, and while going to the next time step (i.e., from C to C + ΔC ), the
arrays A and B are swapped. Hence, this approach is named the A-B pattern. The difference between
the push and pull schemes is that while the arrays A and B in the push scheme contain the values of
5@ at two successive time levels, the arrays in the pull scheme contain the values of 5 ∗@ . However, this
is not a problem since these values are not directly visualized, correct values are still used thanks to
the placement of the streaming in the time step, and the relevant macroscopic quantities computed just
before the collision step can be output for consistent visualization of the results.

5.3.2 A-A pattern

The A-A pattern [C6, A180] is an alternative approach which allows to perform the streaming step in-
place using just one storage array A for the density distribution functions. This feature of the streaming
scheme reduces memory requirements for a given lattice by a factor of two, which is crucial for high-
resolution LBM simulations on GPU accelerators due to their limited amount of global memory. For
@ ∈ {1, . . . , &} and x ∈ LΩ , let us denote the access to a value stored in the array A as A[@, x]. The
time-stepping procedure using the A-A pattern can be formalized as follows:

1. Even iteration (C ∈ {0, 2, 4, . . .} × ΔC ):

a) Pre-collision streaming step:

5@ (x, C) = A[@, x], ∀@ ∈ {1, . . . , &}, (5.11a)

where the values are read from the array A and the direction @ is preserved.

b) The collision step:

5
∗
@ (x, C) = 5@ (x, C) + ΔC

(
C@ (x, C) + S@ (x, C)

)
, ∀@ ∈ {1, . . . , &}, (5.11b)

where 5 ∗@ denotes the value of the distribution function after collision in the given lattice
site.

c) Post-collision streaming step:

A[@, x] = 5
∗
@ (x, C), ∀@ ∈ {1, . . . , &}, (5.11c)

where the post-collision values are written to the same array A at the same lattice site x , but
the direction @ is inverted: @ ∈ {1, . . . , &} is defined such that /@ = −/@ .

2. Go to the next iteration (C := C + ΔC ).
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5.3.2. A-A pattern

3. Odd iteration (C ∈ {1, 3, 5, . . .} × ΔC ):

a) Pre-collision streaming step:

5@ (x, C) = A[@, x − ΔC/@], ∀@ ∈ {1, . . . , &}, (5.11d)

where the values are read from the array A from neighboring lattice sites, but the direction
@ is inverted for consistency with Equation (5.11c).

b) The collision step:

5
∗
@ (x, C) = 5@ (x, C) + ΔC

(
C@ (x, C) + S@ (x, C)

)
, ∀@ ∈ {1, . . . , &}, (5.11e)

where 5 ∗@ denotes the value of the distribution function after collision in the given lattice
site.

c) Post-collision streaming step:

A[@, x + ΔC/@] = 5
∗
@ (x, C), ∀@ ∈ {1, . . . , &}, (5.11f)

where the values are written to the array A to the neighboring lattice sites and the original
direction @ is again preserved.

4. Go to the next iteration (C := C + ΔC ).

Note that for each lattice site x ∈ LΩ , the steps Equations (5.11d) and (5.11f) access exactly the same
memory locations in the array A, since for the whole set of discrete density distribution functions, we
can invert the direction @ in Equation (5.11d) to obtain 5@ (x, C) = A[@, x + ΔC/@], which uses the same
array access indices as Equation (5.11f). The operations in the A-A pattern streaming scheme in the
even and odd iterations are visualized for a D2Q9 velocity set in Figures 5.3 and 5.4, respectively.

The A-A pattern reduces memory requirements for LBM, but removes the freedom of accessing
neighboring values at the current time level separately from the streaming pattern. This causes prob-
lems when implementing certain types of boundary conditions, such as those based on extrapolation.
The author is not aware of any literature dealing with issues related to correct implementation of
boundary conditions using the A-A pattern.

(a) Values read from the global

memory (array A)

(b) Values stored in the registers (c) Values stored into the global

memory (array A)

Figure 5.3: Illustration of the A-A pattern streaming scheme in the even iteration.
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(a) Values read from the global

memory (array A)

(b) Values stored in the registers (c) Values stored into the global

memory (array A)

Figure 5.4: Illustration of the A-A pattern streaming scheme in the odd iteration.

5.3.3 Other patterns

The A-A pattern is not the only technique that allows to perform streaming in-place in a single array.
Alternatives include, for example, the Esoteric twist [A83], the compact LRnLA streaming pattern
[A188], Esoteric push and Esoteric pull [A122]. However, none of the aforementioned papers discuss
advanced topics such as MPI communication or the implementation of boundary conditions. Hence,
these streaming patterns are not yet implemented in our LBM code.

5.4 Computational algorithm

The time-stepping algorithm for LBM can be generalized to cover all aforementioned streaming pat-
terns. Algorithm 3 summarizes the steps according to our implementation for the A-A pattern and the
push/pull schemes with the A-B pattern.

Algorithm 3 (LBM)

1. Initialization: for all x ∈ LΩ and @ ∈ {1, . . . , &}, compute 5@ (x, 0) using (5.8) and write the results
to the A array.

2. Set C = 0.

3. While C < Cmax:

3.1. Compute the external force density L̂ (x, C) for all x ∈ LΩ .
3.2. Pre-collision step according to the streaming pattern – for all x ∈ LΩ and @ ∈ {1, . . . , &}:

• A-B push scheme: read 5@ (x, C) from its natural location in the A array.
• A-B pull scheme: read 5@ (x, C) from the A array according to Equation (5.10a).
• A-A pattern: read 5@ (x, C) from the A array according to Equation (5.11a) or Equa-

tion (5.11d).

3.3. For all x ∈ LΩ , compute the macroscopic density d (x, C) and velocity v (x, C) using
Equations (5.5) and (5.6).

3.4. Handle boundary conditions for all relevant lattice sites in LΩ .
3.5. Collision step: compute 5 ∗@ (x, C) for all x ∈ LΩ and @ ∈ {1, . . . , &} using Equation (5.9a)

(this step is the same in all streaming patterns).
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5.4. Computational algorithm

3.6. Post-collision step according to the streaming pattern – for all x ∈ LΩ and @ ∈ {1, . . . , &}:
• A-B push scheme: write 5 ∗@ (x, C) to the B array according to Equation (5.9b).
• A-B pull scheme: write 5 ∗@ (x, C) to its natural location in the B array.
• A-A pattern: write 5

∗
@ (x, C) to the A array according to Equation (5.11c) or Equa-

tion (5.11f).

3.7. Write the previously computed values of d and v to the global memory. When applicable,
compute all other predetermined macroscopic quantities for visualization.

3.8. Go to the next time step: C := C + ΔC . If the A-B pattern is used, swap the A and B arrays.

All steps in Algorithm 3 involving the iteration over lattice sites provide a natural way to parallelize
the algorithm. While each such step could be implemented in a separate parallel loop (e.g., launching
a separate CUDA kernel), it is desirable to merge all steps in the time loop into a single parallel
loop to avoid a performance penalty due to saving and loading the intermediate results. This is
already indicated in Algorithm 3 which includes explicit read and write operations and it is assumed
that intermediate results are readily available to the following steps. More formally, Algorithm 4
summarizes the steps with an explicitly highlighted parallel loop.

Algorithm 4 (Parallel LBM)

1. Initialization: perform the step 1 in Algorithm 3, but in parallel for all x ∈ LΩ .

2. Set C = 0.

3. While C < Cmax:

3.1. For all x ∈ LΩ in parallel:

• Perform the steps 3.1 to 3.7 from Algorithm 3, but only for the given lattice site x .

3.2. Go to the next time step (step 3.8 in Algorithm 3).

Algorithm 4 is applicable to parallel architectures that utilize a single shared memory, such as
multicore CPUs within a single node or a single GPU accelerator. In the latter case, the algorithm
needs to be extended with data copies to and from the device memory due to input and output of
relevant macroscopic quantities, but these steps are omitted in Algorithm 4 for clarity.

In order to utilize multiple GPUs or even multiple nodes for computing in a distributed fashion, an
additional level of coarse-grained parallelism has to be introduced based on the domain decomposition
approach. The global lattice LΩ is split into subdomains LΩ, 9 , 9 ∈ {1, . . . , #parts} which are processed
independently using #ranks ≤ #parts independent processes (MPI ranks). Each subdomain is assigned to
one MPI rank that is mapped to one coarse-grain computational unit, such as a CPU core, a CPU socket,
or a GPU accelerator. Each MPI rank is responsible for processing computations related to one or more
subdomains that were assigned to it. In order to obtain consistent results, it must be ensured that the
values of discrete density distribution functions are propagated correctly across the interfaces between
subdomains. However, due to the distributed memory system, this cannot happen automatically as
part of the streaming steps in Algorithm 4. The solution adopted in our implementation is to extend
each subdomain LΩ, 9 with ghost lattice sites which are excluded from parallel processing, but provide
additional storage in the A and B arrays where other lattice sites will write and/or read values that will
be later streamed to/from the neighboring subdomains. After the parallel loop in each time step, parts
of the A (or B) array corresponding to the ghost lattice sites are exchanged via MPI among neighboring
subdomains. This approach is summarized below in Algorithm 5.

Algorithm 5 (Distributed LBM)

1. For each subdomain LΩ, 9 :
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• Perform initialization for all x ∈ LΩ, 9 in parallel, excluding the ghost lattice sites (step 1 in
Algorithm 3).

2. Copy distribution functions in the A array on the interfaces between neighboring subdomains.

3. Set C = 0.

4. While C < Cmax:

4.1. For each subdomain and for all x ∈ LΩ, 9 (excluding the ghost lattice sites) in parallel:

• Perform the steps 3.1 to 3.7 from Algorithm 3, but only for the given lattice site x .

4.2. Copy distribution functions in the output array (A or B) on the interfaces between neighbor-
ing subdomains.

4.3. Go to the next time step (step 3.8 in Algorithm 3).

First of all, notice that for the LBM algorithm it is not necessary to exchange the full set of& density
distribution functions between each pair of neighboring processes. Taking the geometric interpretation
of the velocity set into account, the communication size can be significantly reduced: for example, for
/@ = [1, 0, 0]) , the values of 5@ need to be transferred to the right neighbor, but not to the left. In case
of the D3Q27 velocity set and a 1D domain decomposition where each subdomain has at most two
neighbors (one to the left and one to the right), only 9 out of 27 density distribution functions need to
be streamed from one subdomain to another.

However, even with the aforementioned optimization, a naive implementation of Algorithm 5 does
not scale with increasing number of MPI ranks. In order to obtain a scalable distributed LBM algorithm,
an additional optimization is needed: it is necessary to overlap computation with communication in
order to hide the extra latency which was not present in Algorithm 4. This can be done by processing
the boundary lattice sites of each subdomain separately from the interior lattice sites, copying the data
between subdomains as soon as the computation on the boundary has finished, and processing the
interior lattice sites independently while all MPI ranks exchange their boundary data. This approach is
summarized in Algorithm 6 using asynchronous operations.

Algorithm 6 (Distributed LBM with overlapped computation and communication)

1. Initialization (step 1 in Algorithm 5).

2. Copy distribution functions in the A array on the interfaces between neighboring subdomains.

3. Set C = 0.

4. While C < Cmax:

4.1. For all subdomains LΩ, 9 in parallel:
4.1.1. Start processing lattice sites next to the interfaces with other subdomains.
4.1.2. Start processing remaining lattice sites.
4.2. Wait until the operations started in step 4.1.1 are finished for all subdomains.
4.3. Copy distribution functions in the output array (A or B) on the interfaces between neighbor-

ing subdomains.
4.4. Wait until the operations started in step 4.1.2 are finished for all subdomains.
4.5. Go to the next time step (step 3.8 in Algorithm 3).

The steps 4.1.1 and 4.1.2 in Algorithm 6 involve the same local operations as the step 3.1 in
Algorithm 4, but on different sets of lattice sites. Likewise, all steps 2 and 4.2 in Algorithm 5, and steps
2 and 4.3 in Algorithm 6, perform exactly the same operations that are explained further in Section 5.6.
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5.5 Implementation remarks

This section covers practical aspects related to the LBM implementation in our code base [O21]. It
focuses primarily on the data structures needed in LBM and on the templated object-oriented design
of our LBM implementation. Performance optimizations are described in Section 5.6.

Several multidimensional arrays are needed to store relevant values in the LBM implementation:

• Distribution functions are stored in a 4-dimensional array with the size & × #G × #~ × #I .
Depending on the streaming scheme, either one (A) or two (A and B) such arrays are necessary.

• Macroscopic quantities are stored in a 4-dimensional array with the size #< × #G × #~ × #I ,
where #< is the number of macroscopic quantities stored during the simulation. In case of the
Navier–Stokes equations, at least 4 quantities (density and three components of velocity) need
to be stored, but additional user-defined quantities can be added.

• Lattice site tags are stored in a 3-dimensional array with the size #G × #~ × #I and the type of
elements short int. The values in this array determine the type of each lattice site and they are
used to identify different boundary conditions and geometry of immersed bodies.

The data structure used for all of these arrays, TNL::Containers::DistributedNDArray, has been described
in Section 2.1. Recall that the global array corresponding to the lattice LΩ must be decomposed in
a structured conforming manner, but each rank can be assigned multiple subdomains and the rank
numbering is arbitrary. The decomposition of the aforementioned arrays in LBM must be consistent.
Hence, we collect all distributed data structures in a class called LBM_BLOCK that contains all data
associated to one subdomain: local subarrays, subdomain sizes and offsets, indices of neighboring
blocks and ranks that own them.

To facilitate computations on GPU accelerators, two objects for each array are needed to represent
data in different memory spaces. One object allocates the array data in the host memory where it can be
processed by the CPU, and the other object allocates the array data in the device memory where it can
be processed by the GPU accelerator. Themain part of the LBM (i.e., steps 4.1.1 and 4.1.2 in Algorithm 6)
is computed on GPU accelerators, but CPU processing is used for initialization and output of the results.
During the computation of the LBM algorithm, relevant arrays must be copied from one memory space
to another whenever processing is switched from CPU to GPU or vice versa. Furthermore, additional
attribute represented by the LBM_DATA class is added to LBM_BLOCK, which contains the data that need to
be passed to the CUDA kernel when the GPU starts processing the block. This includes pointers to the
arrays allocated in the device memory, sizes of the lattice, and scalar parameters (e.g., viscosity and
parameters related to boundary conditions).

The relation between the LBM_DATA and LBM_BLOCK classes is highlighted in Figure 5.5 along with
additional classes that will be described later. The LBM_BLOCK objects representing individual subdomains
managed by the currentMPI rank are aggregated in an std::vector container in the class named LBM. The
LBM class provides member functions to manipulate all managed blocks collectively, as well as additional
functionality related to LBM simulations, such as variables for time-stepping, or conversion between
physical and lattice units.

From a high level point of view, each MPI rank creates one object of the State class, which combines
all components needed to run a simulation. The default implementation of State contains one object
of the LBM class to represent one set of discrete distribution functions for a Navier–Stokes problem.
The State class is designed to be extended via inheritance, so users can define their own subclass for a
particular case and adjust the behavior of the solver by adding attributes and overriding various virtual
member functions. Hence, it is possible to implement more complicated solvers for coupled problems,
such as the Navier–Stokes–Fourier problem of fluid flow coupled with thermal transport [A52, A155],
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template< typename CONFIG >

class State

{ . . . };

template< typename CONFIG >

class LBM

{ . . . };

template< typename CONFIG >

class LBM BLOCK

{ . . . };

typename CONFIG::DATA

(model of LBM DATA)

has a�ribute

(subclasses can add more instances)

has a�ributes

(in std::vector)

has a�ribute

template<

typename TRAITS,

typename KERNEL STRUCT,

typename DATA,

typename COLL,

typename EQ,

typename STREAMING,

typename BC,

typename MACRO

>

struct LBM CONFIG

{
using TRAITS = TRAITS;

using KERNEL STRUCT = KERNEL STRUCT;

using DATA = DATA;

using COLL = COLL;

using EQ = EQ;

using STREAMING = STREAMING;

using BC = BC;

using MACRO = MACRO;

. . .

};

Data structures: Meta-programming components:

Figure 5.5: Schematic diagram showing the relations between the main C++ classes and meta-
programming components in the LBM implementation.

which can be solved using multiple sets of discrete distribution functions represented by objects of the
LBM class.

Up to now, the description of the implementation revolved around data structures and classes,
leading to the State class that provides extensibility via subclassing. This approach is suitable for high-
level adaptions that reuse the existing low-level building blocks. However, it is often necessary to
modify even the low-level details, such as local per-lattice-site computations in the LBM algorithm.
For example, it may be desirable to switch to a different collision operator or to define additional
macroscopic quantities. In order to sustain high-performance computing on GPU accelerators that
have limited support for virtual functions [M19], using compile-time techniques rather than dynamic
polymorphism is more appropriate. Therefore, our LBM implementation is based on several template
meta-programming components that allow to configure the low-level details while preserving the
generation of optimal CUDA kernels for each configuration.

The starting element of templatemeta-programming used in the code is the LBM_CONFIG template class
that represents a particular configuration for LBM. As shown in Figure 5.5, it combines the following
components that are set via template parameters:

• TRAITS is a structure that holds the definition of fundamental types used in the solver, such as the
floating-point type, index type, permutations of the multidimensional arrays, etc.
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• KERNEL_STRUCT is a structure that is used in the CUDA kernel to store local data related to the given
lattice site. In particular, it contains an array of & discrete distribution functions that are read
and written during the streaming steps.

• DATA is a structure that refers to the LBM_DATA class, or its user-defined subclass. Its purpose is to
pass data from the host to the CUDA kernel. Besides the attributes contained in LBM_DATA, it may
be used to provide data for user-defined extensions of the following components.

• COLL is a structure that implements a particular collision operator. The action of the operator is
computed in its static member function collision using the values in an instance of KERNEL_STRUCT.

• EQ is a structure that implements a particular discrete equilibrium function.

• STREAMING is a structure that implements a particular streaming scheme.

• BC is a structure that defines tags that may be assigned to lattice sites and implements actions to
be taken in the CUDA kernel based on these tags. It is intended for user modification in order to
specify boundary conditions for a particular simulation.

• MACRO is a structure that implements the computation of macroscopic quantities.

Only the KERNEL_STRUCT and DATA components are intended to represent data, the other components are
never instantiated and serve merely to define types or algorithms in terms of static member functions.
The code base provides multiple models for each component with a sensible default behavior. Users
can subclass each model, implement their modifications and pass their type to LBM_CONFIG.

All the aforementioned classes LBM_BLOCK, LBM, and State are in fact templates with one parameter,
CONFIG, as shown in Figure 5.5. The modifications of the components such as BC or MACRO may need to
be designed together with the extensions of State, especially when custom attributes are added to the
DATA component.

5.6 Optimization remarks

The most important optimization for distributed LBM computations has already been outlined in
Algorithm 6: processing interior lattice sites must be overlapped with data synchronization on the
interfaces between neighboring subdomains. This technique is implemented by launching multiple
CUDA kernels in different CUDA streams and using stream-level synchronization functions [M19]. A
separate CUDA stream is used for each interface with a neighboring subdomain and for the interior
lattice sites. The streams for interfaces are configured with the highest priority so that the operations
in these streams are executed as soon as possible. The stream for the interior is configured with the
lowest priority as it is used for the longest-running kernel that is waited for in the end of the time step.

Following the processing of lattice sites at the interfaces, data synchronization among the neighbor-
ing ranks starts. An object of the DistributedNDArraySynchronizer class that was described in Section 2.1.3
is created for each subdomain and each of the & discrete distribution functions. Each synchronizer
object is responsible for synchronizing one subarray to and from the neighbors in the direction of the
corresponding vector from the velocity set. For example, when the D3Q27 velocity set is used and the
lattice is distributed in a 1Dmanner such that each subdomain has at most two neighbors, one to the left
and one to the right, 9 distribution functions (corresponding to discrete velocities with +1 in the first
component) are synchronized from left to right on each interface, and different 9 distribution functions
(corresponding to discrete velocities with −1 in the first component) are synchronized from right to
left. Note that in case of a 2D or 3D decomposition, the communication pattern is more complicated
as it is necessary to also synchronize relevant distribution functions across edges and corners of the
interfaces between subdomains.
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The synchronizer objects are used in Algorithm 6 in the steps 2 and 4.3. The synchronization proce-
dure corresponds to Algorithm 1 on Page 27 with pipelining among all synchronizers as mentioned in
Section 2.1.3. More formally, the pipelined synchronization as executed by oneMPI rank is summarized
in Algorithm 7.

Algorithm 7 (Pipelined synchronization of distributed multidimensional arrays)

1. For all synchronizers of the current MPI rank:

• Allocate all send and receive buffers (relevant only in the first iteration).

• Start copying data from the local array to the send buffers.

2. For all synchronizers of the current MPI rank:

• Wait until all data is copied to the send buffers.

• Start MPI communications with all neighbors via MPI_Isend and MPI_Irecv.

3. For all synchronizers of the current MPI rank:

• Wait for all MPI communications with the neighbors to complete.

• Start copying data from the receive buffers to the local array.

4. For all synchronizers of the current MPI rank:

• Wait until all data is copied to the local array.

Note that the implementation relies on the so-called CUDA-aware support [O18] from the MPI
library in order to avoid having to explicitly copy the send and receive buffers in the steps 1 and 3 to
the host memory. However, the MPI library may still need to internally copy data between the device
and host memory when handling the MPI_Isend and MPI_Irecv calls. This was actually the case in all
simulations performed for this thesis, because we did not have access to any system with functional
NVIDIA GPUDirect technology [M20].

Each copy operation started in the steps 1 and 3 involves launching a CUDA kernel that is
placed into the same high-priority CUDA stream that was previously used for the processing of the
corresponding lattice sites. However, as mentioned in Section 2.1.3, these copy operations can be
avoided when the data is already stored in contiguous blocks of memory. In general, this can be ensured
only with a 1D distribution of the lattice andwith an appropriate storage layout for the underlying four-
dimensional & × #G × #~ × #I array:

• The &-dimension is ordered first such that three-dimensional #G × #~ × #I subarrays for each
discrete distribution function are stored contiguously.

• The G-, ~-, and I-dimensions are ordered depending on the dimension along which the lattice is
decomposed. If it is decomposed along the G-dimension, i.e., each subdomain has at most two
neighbors, one to the left and one to the right, the array is ordered such that the #~ ×#I slices of
the array for each G-coordinate are stored contiguously. Furthermore, each 1D slice of the length
#~ along the ~-dimension is stored contiguously.

Based on the layout of the four-dimensional array storing the values of discrete distribution
functions and assuming the aforementioned 1D decomposition along the G-dimension, the CUDA
thread block size for LBM computations is selected as (1, �~, �I), where the parameters �~ and �I are
determined by Algorithm 8 based on the lattice sizes #~ and #I to achieve coalesced memory accesses
[M19]. The algorithm does not impose any constraints on#~ and#I and assumes that the CUDA kernel
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checks for each thread if it has a corresponding lattice site or is out of bounds. The thread block size is
selected such that �~ is a multiple of 32 (i.e., the warp size on contemporary NVIDIA GPUs [M19]) and
�~�I ≤ max_threads, a limit that we set empirically as max_threads = 256 for a single-precision data type
and max_threads = 128 for a double-precision data type.

Algorithm 8 (CUDA thread block size selection for LBM)

1. Set �~ := max_threads, �I := 1.

2. While �~ > 32 and #~ ≤ �~/2:
2.1. Set �~ := �~/2.
2.2. If �I < #I , set �I := 2�I .

3. Return (1, �~, �I).

5.7 Computational benchmark results

Since the verification and validation of the LBM implementation was performed primarily by other
research team members [A23, A63, A64, A69], this section presents only the performance evaluation,
which is the author’s original work.

The benchmark problem used in this section simulates a laminar flow in a rectangular duct for
which an analytical solution can be derived [B34]. The domain Ω = (0, !G ) × (0, !~) × (0, !I) has an
inflow boundary on the left hand side (i.e., G = 0), outflow boundary on the right hand side (i.e., G = !G ),
and solid walls with the no-slip boundary condition on the remaining sides. The inflow velocity profile
is prescribed as v (0, ~, I) = [Ean,G (~, I), 0, 0]) , where Ean,G denotes the G-component of the velocity in
the analytical solution. The kinematic viscosity is set as a = 1.5 × 10−5m2 s−1 and the final simulation
time is Cmax = 100 s.

The typical metric for performance evaluation of LBM is GLUPS (i.e., giga-LUPS, billions of lattice
updates per second). The value of GLUPS is calculated by taking the number of lattice sites #G ×#~×#I ,
multiplying it by a fixed number of iterations, and dividing it by the computational time needed for
the simulation to complete the given number of steps. Running values of GLUPS can be calculated
during the simulation by measuring the time needed to complete a predefined part of the simulation
(e.g., a given number of iterations). The values reported in this section were calculated by taking the
total number of iterations in the whole simulation and the corresponding computational time (i.e.,
without the time spent in initialization, data output, etc.). The GLUPS values are comparable among
different lattice resolutions and hardware platforms used for the computations, but they are bound to
the underlying configuration of LBM. Most notably, the results reported in this section are specific to
the D3Q27 velocity set and the cumulant collision operator.

5.7.1 Comparison of streaming patterns

As the first result, we compare the performance of two streaming patterns in our implementation: the
A-B pull scheme and the A-A pattern (see Section 5.3). The benchmark was computed on a fixed domain
with !G = !~ = !I = 0.25m, using single or double precision, and without MPI distribution (i.e., using
oneMPI rank). The same simulation was computed on several NVIDIA GPU accelerators from the three
latest architectures (Pascal, Volta/Turing, Ampère) and two product lines (GeForce, Tesla). The solver
was compiled with the nvcc compiler version 11.8 using the flags -std=c++17 -O3 --use_fast_math and the
host compiler g++ version 11.3.0.

The results included in Table 5.1 show that in all cases, the difference between the A-B pull scheme
and the A-A pattern in terms of performance is negligible. For the GeForce line, the values of GLUPS
in single precision are approximately proportional to the maximum global memory throughput of the
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Table 5.1: Performance comparison of the A-B pull scheme with the A-A streaming pattern in single
and double precision on various NVIDIA GPU architectures. The lattice size is 256 × 256 × 256 in all
cases.

GLUPS in single precision GLUPS in double precision

GPU A-B pull scheme A-A pattern A-B pull scheme A-A pattern

NVIDIA GeForce GTX 1080 Ti 1.397 1.453 0.173 0.173
NVIDIA GeForce RTX 2070 1.380 1.529 0.134 0.134
NVIDIA GeForce RTX 3060 1.411 1.411 0.096 0.096
NVIDIA Tesla P100 1.836 2.021 1.028 1.011
NVIDIA Tesla V100 2.853 3.053 1.529 1.467
NVIDIA Tesla A100 5.163 5.163 2.726 2.775

Table 5.2: Hardware specifications of accelerated compute nodes in the Karolina supercomputer [O15],
operated by IT4Innovations (https://www.it4i.cz/).

Number of nodes 72
Processors per node 2
CPU model AMD EPYC 7763 (64 cores, 2.45-3.5 GHz)
Memory per node 1024 GB DDR4 3200 MT/s
Accelerators per node 8
GPU model NVIDIA A100 (40 GB HBM2 memory)
Intra-node connection NVLink 3.0 (12 sub-links, 25 GB/s per sub-link per direction)
Inter-node connection 4× 200 Gb/s InfiniBand ports

GPU, while in double precision they are approximately proportional to the computational performance
(FLOPS) of the GPU.This suggests that LBM in single precision is a memory-bound application on these
platforms, while LBM in double precision is compute-bound (note that GPUs in the GeForce line have
severely limited performance in double precision [M19]). For the Tesla line, where the ratio between
the performance in single and double precision is 2 for each GPU, the GLUPS values for single as well
as double precision are approximately proportional to the maximum memory bandwidth. For single
precision, the proportionmatches even the GeForce line. LBM is therefore amemory-bound application
on Tesla GPU accelerators in single as well as double precision.

Overall, based on the results in Table 5.1, it is evident that the A-A pattern provides an efficient way
to reduce the memory requirements of LBM with negligible impact on the computational performance.
Hence, the A-A pattern will be used in all LBM simulations presented hereafter.

5.7.2 Scaling on the Karolina supercomputer

The following results show the performance scaling of distributed LBM computations on the Karolina
supercomputer [O15], operated by IT4Innovations in Ostrava. The system comprises 72 accelerated
compute nodes with hardware specifications listed in Table 5.2. The solver was compiled with the nvcc

compiler version 11.6 using the flags -std=c++17 -O3 --use_fast_math and the host compiler nvc++ version
22.2. TheMPI implementation was OpenMPI version 4.1.2. All software components were loaded using
the environment module OpenMPI/4.1.2-NVHPC-22.2-CUDA-11.6.0.

We performed a strong scaling analysis and two types of weak scaling analysis (explained below)
using a 1D decomposition of the domain with #ranks = #parts (i.e., each MPI rank managed one
subdomain). The number of GPUs used in the studies varied from 1 to 128 (i.e., 1 to 16 nodes) and
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Table 5.3: Strong scaling in single and double precision on the Karolina supercomputer. The lattice size
is 512 × 512 × 512 in all cases. Each MPI rank was mapped to its own GPU accelerator.

single precision double precision

#nodes #ranks GLUPS (? �55 GLUPS (? �55

1 1 5.2 1.0 1.00 2.8 1.0 1.00
1 2 10.2 2.0 0.98 5.5 2.0 1.00
1 4 20.4 3.9 0.98 11.1 4.0 1.01
1 8 41.1 7.9 0.99 22.3 8.1 1.01
2 16 80.4 15.5 0.97 44.1 16.0 1.00
4 32 145.2 28.0 0.87 85.5 31.0 0.97
8 64 258.6 49.8 0.78 153.7 55.7 0.87
16 128 301.1 58.0 0.45 225.1 81.6 0.64

each rank always used its own separate GPU. The scaling is evaluated based on the GLUPS metric as
defined above. For parallel computations using multiple GPUs, we define the speed-up (? as the ratio
between GLUPS using #ranks and 1 GPUs, and parallel efficiency �55 , which quantifies the scalability
of the computation and is defined as the speed-up divided by the number of GPUs, i.e.

�55 =
GLUPS for #ranks GPUs

#ranks × (GLUPS for 1 GPU) .

In the strong scaling analysis, the global lattice size is kept constant and with increasing #ranks,
the subdomains become smaller. Table 5.3 shows the results on a 512 × 512 × 512 lattice where the
best strong scaling efficiency was achieved. The corresponding problem size is approximately 16 GB
in single precision and 32 GB in double precision, so it cannot be increased much further in order to
fit into the 40 GB memory of a single GPU. The physical dimensions of the domain are !G = !~ =

!I = 0.25m. According to the results from Table 5.3, the computations are strongly scalable with
perfect efficiency up to two nodes and then the efficiency starts to drop. When only GPUs from a
single node are used, all communication goes through NVLink, which is the fastest interconnection
between GPUs that is available on the Karolina supercomputer. When two nodes are used, two ranks
(with IDs 7 and 8) must exchange data over the InfiniBand interconnection between nodes. When more
than two nodes are used, some nodes must exchange the same amount of data with multiple nodes. For
example, with four nodes (with IDs 0, 1, 2, 3) and eight ranks per node (with IDs 0 to 31), ranks 8
and 15 from node 1 exchange data with rank 7 from node 0 and rank 16 from node 2, respectively.
Also note that due to the 1D decomposition used in this strong scaling study, the computation-to-
communication ratio decreases with increasing number of ranks, since the amount of communication
per rank is constant, but the subdomains become smaller. Hence, the communication cost becomes
dominant as it eventually cannot be overlapped completely with the computation using Algorithm 6
on Page 88. In the last computations using 128 ranks, the size of each subdomain is 4×512×512 and the
amount of communication corresponds to 1/2 of the subdomain for all ranks except the first and the
last where it corresponds to 1/4. The resulting parallel efficiency reported in Table 5.3 is 0.45 for single
precision and 0.64 for double precision. We suppose that this degenerate case could be significantly
improved with a multidimensional decomposition of the domain.

In the first weak scaling analysis, the lattice size of each subdomain is kept constant and with
increasing #ranks, the whole domain becomes larger. Furthermore, the computation-to-communication
ratio is kept constant as well. Table 5.4 demonstrates almost perfect weak scaling for the case where the
size of each subdomain is 256 × 256 × 256 and the subdomains are arranged along the G-axis, resulting
in global lattice with the size 256#ranks × 256× 256. We have also achieved the same parallel efficiency
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Table 5.4: Weak scaling with 1D domain expansion in single and double precision on the Karolina
supercomputer. The lattice size is scaled as 256#ranks × 256 × 256. Each MPI rank was mapped to its
own GPU accelerator.

single precision double precision

#nodes #ranks GLUPS (? �55 GLUPS (? �55

1 1 5.2 1.0 1.00 2.8 1.0 1.00
1 2 10.2 2.0 0.99 5.5 2.0 0.99
1 4 20.4 4.0 0.99 11.0 4.0 0.99
1 8 40.9 7.9 0.99 22.0 8.0 0.99
2 16 81.8 15.8 0.99 44.1 15.9 0.99
4 32 163.4 31.7 0.99 88.2 31.8 0.99
8 64 326.8 63.4 0.99 176.4 63.6 0.99
16 128 653.9 126.7 0.99 352.8 127.3 0.99

Table 5.5: Weak scaling with 3D domain expansion in single and double precision on the Karolina
supercomputer. The lattice size is scaled as #G = #~ = #I =

⌊
512 3

√
#ranks

⌉
in single precision and

#G = #~ = #I =

⌊
256 3

√
#ranks

⌉
in double precision. Each MPI rank was mapped to its own GPU

accelerator.

single precision double precision

#nodes #ranks #G GLUPS (? �55 #G GLUPS (? �55

1 1 512 5.2 1.0 1.00 256 2.8 1.0 1.00
1 2 645 9.5 1.8 0.91 323 5.3 1.9 0.95
1 4 813 19.0 3.7 0.92 406 10.6 3.8 0.96
1 8 1024 40.9 7.9 0.98 512 22.4 8.1 1.01
2 16 1290 74.3 14.3 0.89 645 40.4 14.6 0.91
4 32 1625 153.8 29.6 0.93 813 82.9 30.0 0.94
8 64 2048 324.0 62.4 0.98 1024 176.2 63.7 1.00
16 128 2580 604.9 116.5 0.91 1290 301.3 108.9 0.85

even with larger subdomains (such as 512 × 512 × 512), but not with smaller subdomains (such as
128 × 128 × 128) that are presumably too small to saturate dozens of GPU accelerators. However, note
that such weak scaling analysis is not practical, since the physical size of the domain is different in each
case (here !G = 0.25#ranksm and !~ = !I = 0.25m). A more realistic weak scaling study is described
below.

In the second weak scaling analysis, the primary requirement is to keep the physical size of the
domain constant. In this study, we fix !G = !~ = !I = 0.25m, same as in the strong scaling study. The
global discrete problem size is scaled in all three spatial dimensions such that the lattice size#G×#~×#I
is (approximately) proportional to the number of ranks. The lattice size is scaled according to the
formula

#G = #~ = #I =

⌊
B
3√
#ranks

⌉
, (5.12)

where b·e denotes rounding to the nearest integer and B is a scaling parameter. For the results presented
in Table 5.5, we chose B = 512 for single precision in order to obtain the largest possible base lattice
(512×512×512 for one rank) where the best weak scaling efficiency was achieved. For double precision,
we had to use a smaller base lattice with B = 256 due to memory limitations. The reason is that in this
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study, the communication size per rank is increasing (it is proportional to #~ ×#I) and storage for data
received from neighboring ranks must be allocated, so with B = 512 and #ranks ≥ 32 the amount of
memory needed per rank would be more than the GPU accelerators have available. It can be noticed in
Table 5.5 that �55 does not behavemonotonically: for 1, 8, and 64 ranks it is close to 1, but otherwise it is
significantly lower. However, this problem is not due to the communication cost—the communication
is completely overlapped with computation, but the computation itself is slower than it should be. The
CUDA thread block size selected by Algorithm 8 is (1, �~, 1) for all lattice sizes used in this study, where
�~ = 256 for single precision and �~ = 128 for double precision. It can be noticed that the performance
of the LBM algorithm is decreased for cases where #~ is not a multiple of �~ due to inactive threads
compared to the optimal case where #~ is a multiple of �~ .

Note that all results presented in this section were computed without utilizing the NVIDIA GPUDi-
rect technology [M20] which is still not fully functional on the Karolina supercomputer. Hence, the
effective bandwidth of inter-node communication was limited, because data could not be transferred
from the GPU memory directly to the InfiniBand network interface and had to be buffered in the
operating system memory instead. Another problem is that in each computation, InfiniBand was used
in multi-rail configuration [O38] with two ports, but the same ports were shared by all ranks on a
node and the other two InfiniBand ports remained completely unused. We are not certain if this is a
hardware or software problem and how it should be addressed. The observed maximum bandwidth
between nodes was approximately 15 GB/s per direction (i.e., 30 GB/s bidirectional).
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Chapter 6

Coupled LBM-MHFEM Computational
Approach

As described in Chapter 5, the lattice Boltzmann method is an effective tool for numerical fluid flow
simulations and its coupling with other methods is still subject of intensive research in order to develop
solvers for complex multiphysics models [A52, A69, A76, A94, A131, A135, A136]. In this work, we
investigate a novel computational approach based on the coupling of LBMwith the NumDwarf scheme
described in Chapter 4, which is based on the mixed-hybrid finite element method. As the initial step
towards the development of a flexible multiphysics solver, a rather simple model coupling the Navier–
Stokes equations with a linear advection–diffusion equation is considered. The content of this chapter
deals with numerical details of the coupled approach based on the paper [A111] and represents original
work of the author. An application of the developed approach is described in the next chapter.

The chapter is organized as follows. Section 6.1 formulates the general problem and its special case
with an analytical solution for convergence analysis. Then, Sections 6.2 to 6.4 provide details related to
the coupled computational approach and its implementation. The final Section 6.5 describes the results
of the experimental convergence analysis using the benchmark problem from the first section.

6.1 Problem formulation

The flow of an incompressible fluid is governed by the Navier–Stokes equations

∇ · v = 0, (6.1a)

mv

mC
+ v · ∇v = − 1

d
∇? + aΔv, (6.1b)

where v = [EG , E~, EI] [ms−1] is the fluid velocity, ? [Pa] is the pressure, d [kgm−3] is the fluid density,
and a [m2 s−1] is the kinematic viscosity. All these quantities are functions of spatial coordinates x =

[G,~, I] ∈ Ω1 ⊂ R3 and time C ∈ (0, Cmax).
The mass and momentum conservation laws (6.1) are coupled with a generic advection–diffusion

equation without sources or sinks that may be written in the conservative form

mq

mC
+ ∇ · (qv − �0∇q) = 0, (6.2a)

where q is a variable that may be associated to the physical quantity transported by the fluid (e.g.,
molar or mass concentration for mass transport, or temperature for heat transport) and �0 [m2 s−1] is
the diffusion coefficient. Combining Equations (6.1a) and (6.2a) leads to the non-conservative form

mq

mC
+ v · ∇q − ∇ · (�0∇q) = 0. (6.2b)
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Figure 6.1: Schematic configuration of the computational domains Ω1 and Ω2 (2D cross-section of a 3D
cuboidal channel along the plane ~ = 0).

Equations (6.2a) and (6.2b) are assumed to hold in Ω2 × (0, Cmax), where Ω2 ⊂ Ω1. Since Equations (6.1)
and (6.2) are coupled only via the velocity field v, Equation (6.1) can be solved without Equation (6.2)
as the values of q do not influence the flow field.

In this work, we are interested in modeling constituent transport in a channel flow. As a benchmark
problem, we consider the situation illustrated in Figure 6.1 where Ω1 = [0, 1.75] × [0, 1] × [0, 1]
(dimensions are in meters) is a cuboidal channel with inflow, outflow, and solid wall boundaries. The
constituent transport is tracked in the subdomain Ω2 = [0.5, 1.5] × [0.25, 0.75] × [0.25, 0.75] (in meters).
For simplicity, we assume that Ω2 is completely immersed in the domain Ω1 (i.e., none of the domain
boundaries coincide: mΩ1 ∩ mΩ2 = ∅). The kinematic viscosity a = 15.52× 10−6m2 s−1 and the diffusion
coefficient �0 = 25.52 × 10−6m2 s−1 are set the same as in Chapter 7 (see Table 7.2).

Both Equations (6.1) and (6.2) must be supplemented by suitable initial and boundary conditions.
For simplicity, the velocity field is initialized by zero (v (x, 0) = 0 for G ∈ Ω1) and the variable q is
initialized by one (q (x, 0) = 1 for x ∈ Ω2). The boundary conditions on mΩ1 are posed as follows:

• Solid walls (i.e., the top, bottom, front, and back sides of Ω1) are modeled using the standard
no-slip boundary condition.

• A fixed value of pressure and a zero velocity gradient in the normal direction are prescribed on
the outflow side (i.e., right hand side) of domain Ω1.

• Fixed values of velocity are prescribed on the inflow side (i.e., left hand side) of Ω1. Details will
be described later.

The conditions for the variable q on the subdomain boundary mΩ2 are:

• A Dirichlet-type condition is used to prescribe fixed values on the inflow side (i.e., left hand side)
of Ω2.

• A Neumann-type condition is used to prescribe zero gradient in the normal direction on all
remaining sides of Ω2.
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In order to study the differences between the conservative and non-conservative formulations, the
boundary conditions are specified with the following profiles. Turbulent flow in Ω1 is induced by
prescribing a fluctuating velocity profile on the inflow boundary of Ω1 using the algorithm described
in Appendix G with the following parameters: mean velocity vin = [1, 0, 0]) ms−1, integral length scale
Lint = 0.05m, turbulent kinetic energy : = 10−2m2 s−2, and number of discrete modes #modes = 3000.
On the inflow boundary of Ω2 (G = 0.5m), we prescribe a fixed value qin = 1. Given a velocity field
v (x, C) satisfying the divergence-free condition Equation (6.1a), this initial–boundary–value problem
has a trivial analytical solution q (x, C) = 1 for all x ∈ Ω2 and C > 0.

6.2 Computational algorithm and time adaptivity

The Navier–Stokes equations (6.1) are solved numerically by the lattice Boltzmann method described
in Chapter 5. The transport equation (6.2) is incorporated into the mathematical framework of the
NumDwarf solver described in Chapter 4. Both Equation (6.2a) and Equation (6.2b) can be converted
to the form of Equation (4.1) on Page 57 by taking = = 1, ` = [q], N = [1], m = [1], J = [�0], w = 0,
r = 0, f = [0], and depending on the equation:

• u = 0, a = [v] for Equation (6.2a) (conservative form),

• u = [v], a = 0 for Equation (6.2b) (non-conservative form).

The resulting solver couples the computational algorithms of MHFEM (Section 4.2.10) and LBM
(Section 5.4). The initialization of the solver includes setting all physical parameters, discretization of
the domain Ω1 by the regular lattice LΩ1

(see Section 5.2.1), discretization of the domain Ω2 by the
conforming unstructured mesh Kℎ (see Section 4.2), and decomposition of the lattice and mesh into
subdomains for distributed computing (described later in Section 6.4). Then the solver allocates all data
structures, applies the initial conditions and starts the main time-loop. To optimize the efficiency of
the solver, we developed an adaptive time-stepping algorithm based on a ”CFL-like” condition. The
time-stepping part of the computational algorithm is summarized in Algorithm 9.

Algorithm 9 (Time-stepping in the coupled LBM-MHFEM scheme)

1. Set C! := 0 s and C" := 0 s, physical time step XC [s] and final time Cmax [s].

2. While C! < Cmax:

2.1. After every 1000 iterations, recompute inflow velocity fluctuations that will be used in the
next 1000 iterations. See Appendix G for details.

2.2. Perform one iteration of LBM on the lattice LΩ1
(i.e., perform the steps 3.1 to 3.7 from

Algorithm 3 on Page 86).
2.3. Set C! := C! + XC .
2.4. If C" < C! :
2.4.1. Interpolate the velocity field from the regular lattice to the unstructured mesh. See

Section 6.3 for details.
2.4.2. Compute � = max�{|v̂� |XC/ℎ�}, where � ∈ Eℎ goes over all faces of the mesh, |v̂� | is

the interpolated velocity magnitude on face � and ℎ� [m] is the mesh size on face �.
2.4.3. Set the time step forMHFEM: XC," := XC b�max/�c if� ≤ �max, else XC," := XC/d�/�maxe.
2.4.4. Set the number of MHFEM iterations: =" := 1 if � ≤ �max, else =" := d�/�maxe.
2.4.5. Perform =" iterations of MHFEM using Algorithm 2 with the time step XC," .
2.4.6. Set C" := C" + ="XC," .
2.5. If C! or C" reached a pre-defined time period, make a snapshot of the current data for

visualization/post-processing.
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6.3. Interpolation of the velocity field

Initially, two separate time tracking variables C! and C" are created, one for computations on the
lattice and the other for computations on the mesh. The lattice variable C! is the main one which
is checked in the time loop condition (step 2 above). The variable C" is incremented separately in the
step 2.4 that is responsible for the coupling between computations on the lattice and the mesh. Here the
velocity field is interpolated from the lattice to the mesh (the procedure is described later in Section 6.3)
and the time-step control factor � is computed. The time step XC," for the mesh computations can be
either longer or shorter than XC depending on the value of � . If � ≤ �max, where �max is a pre-defined
constant, the time step XC," is set as an integral multiple of XC and the time variable C" is pushed forward
to the new time level by just one iteration of MHFEM. Hence, several following LBM iterations can be
performed successively until the lattice time C! overruns C" and the condition 2.4 is satisfied. On the
other hand, if � > �max, the MHFEM solver needs to perform =" > 1 iterations to move to the new
time level C" + XC with a shorter time step XC," = XC/=" .

In practice, we found empirically that limiting the time step XC," with �max = 1/2 is necessary to
ensure the stability of the coupled solver. The overall performance of the solver depends on the concrete
values of XC," selected by the adaptive algorithm, which are influenced by the quantities needed to
compute the time-step control factor � , i.e., local velocity magnitude, lattice time step XC (which is
related to the lattice space step XG ), and the local space step ℎ� of the unstructured mesh.

An important choice related to the solver performance is the selection of the algorithm for the
solution of large systems of linear equations arising from the MHFEM discretization. We achieved
the best performance using the BiCGstab method combined with the Jacobi preconditioner, both
implemented in TNL [A142]. In all simulations presented in this thesis, the BiCGstab method took at
most 4 iterations to converge in most of the time steps, so improved performance cannot be expected
from stronger preconditioners.

6.3 Interpolation of the velocity field

Since Equations (6.1) and (6.2) are coupled by the velocity field v (x, C), the numerical approach relies on
the interpolation of the approximate velocity field computed by LBM and its projection into the finite
element space used by MHFEM. Note that the spatial discretization of the domain Ω2 ⊂ Ω1 is generally
different than the equidistant lattice on Ω1; it may be a regular grid with different space steps or even
an unstructured mesh.

The interpolation of the velocity field can be requested at any point x ∈ Ω2. The surrounding lattice
points x̂ ∈ LΩ1

can be easily found and the linear or cubic interpolation in R3 can be used to obtain
the velocity at x from the velocities at x̂ . Note that linear interpolation can be implemented more
efficiently than cubic interpolation as it uses fewer input data points. Our implementation of the cubic
interpolation is not efficient and may cause the whole solver to run multiple times slower compared to
the linear interpolation. The impact of using the linear or cubic interpolation on the accuracy of the
numerical solution is investigated in Section 6.5.

The finite element space used byMHFEM imposes requirements on the interpolation of the velocity
field. In this work, we use the Raviart–Thomas–Nédélec space of the lowest order RTN0(Kℎ) for the
finite element–approximation of the velocity field. According to the definition in Equation (4.7) on
Page 59, functions 8 belonging to the space RTN0(Kℎ) must satisfy:

1. for any element  ∈ Kℎ , the restriction of 8 to  , 8 | , must belong to the finite element space
RTN0( ) on the element  ,

2. the normal trace of 8 must be continuous on all interior faces of the mesh, i.e.,
∫
�
8 | 1

· n 1,�
+∫

�
8 | 2

· n 2,�
= 0 for all � ∈ E int

ℎ , � ∈ E 1
∩ E 2

, where n ℓ ,� is the unit normal vector on the
face � oriented outward from the element  ℓ , ℓ = 1, 2.
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6.4. Domain decomposition for overlapped lattice and mesh

An interpolation strategy compatible with these requirements is as follows. First, velocity is evaluated
at the element face centers x� for all � ∈ Eℎ . This can be done at any time level C yielding the
approximate velocity values v̂� ≡ v̂ (x�, C) which are then used for the projection into the RTN0(Kℎ)
space. The discrete velocity field is assumed to be piecewise constant on the element sides Eℎ and the
values v̂� define the components corresponding to the face � in the finite element spaces RTN0( 9 ) of
the elements  9 adjacent to the face �.

Finally, it is important to note that the MHFEM schemes for Equations (6.2a) and (6.2b) do not
behave equivalently with a general discrete velocity field interpolated to the mesh. This is because
the discrete velocity field computed by LBM may not satisfy Equation (6.1a) exactly and even if it
did, the interpolation scheme combines values from different locations in the flow field on a single
element. Hence, the field interpolated to the unstructured mesh may be locally non-conservative, i.e.,
the discrete approximation of the velocity divergence

∑
�∈E 

v̂� · n ,� on element  ∈ Kℎ may be non-

zero. The accuracy of the numerical scheme applied to the conservative form of Equation (6.2a) and
non-conservative form of Equation (6.2b) is investigated in Section 6.5 on a benchmark problem.

6.4 Domain decomposition for overlapped lattice and mesh

The combination of a lattice overlapped with an unstructured mesh requires special attention when
the solver is run in a distributed fashion, e.g. utilizing multiple GPU accelerators. Both the lattice
and the mesh have to be decomposed into subdomains and each assigned to an MPI rank. Sufficiently
wide overlapping regions on the lattice subdomains have to be generated to ensure that each rank can
interpolate the velocity field from its lattice subdomains to its mesh subdomains. Furthermore, since
computations on the lattice and the mesh are never executed concurrently, it is desirable to balance the
sizes of the subdomains in order to achieve good computational efficiency.

Figure 6.2 illustrates the problems with decomposition on an example involving a non-uniform
cuboidal mesh that is refined around the two small black rectangles (they correspond to the two
synthetic plants in the configuration EX-1 that will be described in Chapter 7). Due to a limitation of
our LBM implementation, only 1D decompositions (i.e., such that all interfaces between two lattice sub-
domains are planes perpendicular to the G-axis) can be considered. Figure 6.2a shows a naive approach
with uniformly sized lattice subdomains (highlighted with rainbow-colored rectangles), which leads to
highly non-uniform distribution ofmesh cell counts in each subdomain (indicated by percentages below
the figure). In order to solve this balancing problem, we implemented a decomposition strategy that
optimizes the lattice as well as mesh subdomains such that each MPI rank is assigned approximately
the same number of lattice sites as well as mesh cells. The essential idea is to first determine the part of
the domain where the lattice and mesh overlap, perform its decomposition such that an optimal mesh
decomposition is achieved, and then decompose the remaining parts of the lattice (which do not overlap
with the mesh) to add up to the optimal number of lattice sites assigned to each rank.

For a given regular lattice and an unstructured mesh covering the domain Ω1 and its subdomain
Ω2, respectively, the decomposition procedure (with #ranks denoting the number of MPI ranks used in
the computation and #cells denoting the total number of mesh cells) is summarized in Algorithm 10.

Algorithm 10 (Decomposition of lattice overlapped with unstructured mesh)

1. For all G-coordinates of the lattice sites, count the number of mesh cells whose centroid is located
left of this G-coordinate. Use linear interpolation to obtain a continuous interpolant function � (G)
that is increasing from 0 to #cells.

2. Find the smallest interval [G0, G#ranks
] such that � (G#ranks

) − � (G0) = #cells. This interval identifies
the part of the lattice that is overlapped by the mesh, i.e., the dark transparent rectangle in
Figure 6.2.
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6.4. Domain decomposition for overlapped lattice and mesh

(a) Uniform lattice decomposition

12% 14% 14% 14% 24% 19% 3% 0%

(b) Non-uniform lattice decomposition

Figure 6.2: Domain decompositions of a regular lattice (rainbow-colored subdomains) overlapped with
an unstructured mesh (dark transparent rectangle) that is refined around the two small black rectangles
(they correspond to the synthetic plants from Chapter 7). The percentages below the case (a) indicate
the portion of the total number of mesh cells included in the corresponding lattice subdomain. All
lattice subdomains in the case (b) include 1/8 of the total number of mesh cells.

3. Find a partition {G0, G1, . . . , G#ranks−1, G#ranks
} of the interval [G0, G#ranks

] such that each subinterval
contains approximately #cells/#ranks mesh cells:

3.1. Define the objective function 5 (G1, . . . , G#ranks−1) which measures the imbalance of mesh
cells included in each subinterval based on the function � .

3.2. Minimize the objective function using the gradient descent method and the uniform interval
partition as initial condition.

3.3. Round the solution from R to the lattice coordinates (i.e., from double to int). As the
rounding does not ensure the optimal result in integer precision, we additionally minimize
the objective function in integer precision. We try to iteratively increment/decrement each
component of the solution as long as it improves the partition.

4. Decompose the remaining parts of the lattice which do not overlap with the mesh. Note that
these parts of the lattice are decomposed separately in reversed order (i.e., from right to left) in
order to allow merging the non-overlapping subdomains with the adjacent mesh-overlapping
subdomains (see the red and gray subdomains in Figure 6.2b).

The result of this decomposition procedure is illustrated in Figure 6.2b. Overall, the decomposition
algorithm optimizes the computational cost and memory requirements of each MPI rank at the cost of
increased communication due to increased number of lattice subdomains.
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6.5. Experimental convergence analysis

Table 6.1: Characteristics of lattice and grid resolutions used for the experimental convergence analysis.

RES-A1 RES-A2 RES-A3

Lattice space step 8.06mm 3.97mm 1.97mm
Lattice dimensions 217 × 128 × 128 441 × 256 × 256 889 × 512 × 512
MHFEM grid dimensions 128 × 64 × 64 256 × 128 × 128 512 × 256 × 256
No. of lattice sites approx. 3.5 · 106 approx. 29 · 106 approx. 233 · 106
No. of grid cells approx. 0.5 · 106 approx. 4 · 106 approx. 33 · 106
Base time step ΔC 1.39 × 10−3 s 3.38 × 10−4 s 8.32 × 10−5 s
Average no. of LBM iters per
MHFEM step (b�max/�c)

2 4 9

6.5 Experimental convergence analysis

In this section, we study the convergence of the coupled LBM-MHFEM scheme using a numerical
experiment based on an artificial benchmark problem described in Section 6.1. The aim of this section is
to study the differences between the conservative and non-conservative formulations of the advection–
diffusion equation (6.2).

Several variants of the MHFEM scheme from Chapter 4 were used, namely explicit or implicit
upwind (see Section 4.2.7), and linear or cubic interpolation of the velocity field (see Section 6.3). Each
variant was computed in three resolutions denoted as RES-A1, RES-A2, and RES-A3, see Table 6.1.
Note that single precision was used in the LBM part for fluid flow and double precision was used in
the MHFEM part. To illustrate the turbulent flow field in Ω1, Figure 6.3 shows the horizontal velocity
(EG ) field in the final time Cmax = 10 s. Figure 6.4 shows qualitative differences between the fields of the
transported variable q that were computed using different variants of the MHFEM scheme. Since the
fields obtained using any variantwith the non-conservative formulationwere visually indistinguishable
from the constant analytical solution on the scale used in Figure 6.4, only the conservative formulation
variants are shown in the figure. Note that for given resolution, the velocity field is the same in all
variants of the MHFEM scheme. Quantitative comparison is presented in Table 6.2 in terms of !?

norms of the differences between the analytical solution q = 1 and each numerical solution qℎ .
Both qualitative and quantitative results in Figure 6.4 and Table 6.2 indicate that for the conser-

vative formulation, changing linear interpolation to cubic, as well as changing the explicit upwind
discretization to implicit upwind, leads to smoother and more accurate results. Furthermore, all these
variants converge to the analytical solution as the lattice and grid are refined. However, even the most
accurate numerical solution obtained using the conservative formulation exhibits an error that is larger
by orders of magnitude compared to the non-conservative formulation, even in the coarsest resolution.
The only difference between the discretizations of the non-conservative and conservative formulations
is in Equation (4.23) on Page 62 where the former contains the term

∑
�∈E 

D8, 9, ,� corresponding to

the discrete divergence of velocity. The results indicate that this extra term can be understood as
a compensation for the non-zero divergence of the discrete velocity field interpolated on the mesh.
Furthermore, it can be noticed in Table 6.2 that changing the interpolation or upwind scheme does
not have a significant effect on the error when the non-conservative formulation is used. In the finest
resolution RES-A3, using the linear interpolation and explicit upwind is not only advantageous for the
performance of the solver, but also leads to a smaller error.

The presented results show that solving the transport equation in the conservative form of Equa-
tion (6.2a) with a highly turbulent velocity field may lead to large deviations in the numerical solution,
whereas solving the non-conservative form of Equation (6.2b) with the same velocity field results in
significantly more accurate solution. An alternative approach to address the problem of non-zero
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6.5. Experimental convergence analysis

Table 6.2: Results of the experimental convergence analysis for different formulations and variants of
the MHFEM scheme.

conservative non-conservative

interp. upwind resolution ‖q − qℎ ‖1 ‖q − qℎ ‖2 ‖q − qℎ ‖1 ‖q − qℎ ‖2

linear

explicit
RES-A1 4.01 × 10−3 1.11 × 10−2 1.21 × 10−14 3.70 × 10−13

RES-A2 2.01 × 10−3 5.71 × 10−3 5.05 × 10−15 2.85 × 10−13

RES-A3 7.82 × 10−4 2.28 × 10−3 8.00 × 10−15 1.34 × 10−12

implicit
RES-A1 3.24 × 10−3 8.95 × 10−3 3.62 × 10−13 2.40 × 10−12

RES-A2 1.62 × 10−3 4.64 × 10−3 5.80 × 10−14 2.62 × 10−13

RES-A3 6.23 × 10−4 1.82 × 10−3 3.97 × 10−14 2.19 × 10−13

cubic

explicit
RES-A1 3.25 × 10−3 8.75 × 10−3 1.19 × 10−14 3.56 × 10−13

RES-A2 1.31 × 10−3 3.63 × 10−3 7.44 × 10−15 5.01 × 10−13

RES-A3 3.98 × 10−4 1.09 × 10−3 8.68 × 10−15 1.45 × 10−12

implicit
RES-A1 2.63 × 10−3 7.08 × 10−3 5.28 × 10−13 2.46 × 10−12

RES-A2 1.07 × 10−3 2.96 × 10−3 5.73 × 10−14 2.50 × 10−13

RES-A3 3.24 × 10−4 8.83 × 10−4 3.37 × 10−14 1.91 × 10−13

Figure 6.3: Horizontal velocity field (EG ) along the plane ~ = 0 in Ω1, computed in resolution RES-A2.

divergence of the discrete velocity field might be to use a post-processing algorithm to recover the
discrete divergence-free condition on the given mesh. The problem of compatibility between flow
schemes producing a discrete velocity field and transport schemes using the interpolated velocity was
extensively researched and several velocity post-processing algorithms were developed [A108, A120,
A164]. However, such post-processing would incur additional cost to the computational algorithm and
the approach is not investigated further in this thesis.
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6.5. Experimental convergence analysis

(a) Linear interpolation, explicit upwind, RES-A1 (b) Cubic interpolation, explicit upwind, RES-A1

(c) Linear interpolation, implicit upwind, RES-A1 (d) Cubic interpolation, implicit upwind, RES-A1

(e) Linear interpolation, explicit upwind, RES-A2 (f) Cubic interpolation, explicit upwind, RES-A2

(g) Linear interpolation, implicit upwind, RES-A2 (h) Cubic interpolation, implicit upwind, RES-A2

Figure 6.4: Simulated fields of the transported variable q along the plane ~ = 0 in Ω2 in the benchmark
problem using the conservative formulation of the transport equation (6.2a). Several configurations
of the numerical scheme are compared: linear and cubic interpolation of the velocity from LBM to
MHFEM, and discretization of the advection term in the MHFEM scheme based on explicit and implicit
upwind. Only the first two resolutions RES-A1 and RES-A2 are shown here.
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Chapter 7

Mathematical Modeling of Vapor
Transport in Turbulent Air Flow

In this chapter, we use the coupled LBM-MHFEM computational approach developed in Chapter 6 to
simulate vapor transport in turbulent air flow above a soil surface. The content is based on the paper
[A111]. The author developed the mathematical model and computational methodology, performed all
simulations and compared the results with experimental data. The experimental methodology was
developed by Andrew C. Trautz and Tissa H. Illangasekare, the analysis of the results and overall
integration of mathematical modeling and experimental work were performed collectively by all co-
authors of the paper.

The chapter is organized as follows. First, the motivation and introduction to the mathematical
modeling of vapor transport in air is described in Section 7.1. The following Section 7.2 provides a
general description of the experiments, mathematicalmodel and boundary conditions. Then, Section 7.3
gives specific details of the computational methodology using the coupled LBM-MHFEM solver and the
final Section 7.4 presents the validation results of our model. The model is compared both qualitatively
and quantitatively to experimental data measured in three configurations resulting in different flow
regimes.

7.1 Introduction

Numerous proprietary or open-source computational tools are available for solving partial differential
equations originating from mathematical modeling of various biological, environmental, or industrial
problems. In particular, computational software such as deal.II [A17], DUNE [C10], OpenFOAM [C26],
TOUGH2 [M24], MFiX [M27], ANSYS Fluent [M3] or COMSOL Multiphysics [M8] are suitable for
complex multiphysics simulations involving multiphase or compositional flows. However, each soft-
ware has limitations: the underlying numerical methods may restrict the applicability of the software;
the approach for code execution may cause limited or no advantage of using high-performance ar-
chitectures, in particular graphical processing units (GPUs), for the acceleration of computations; and
the software design in general might make it difficult to combine different tools for solving coupled
problems. Furthermore, extending large software packages such as the aforementioned ones with novel
mathematical approaches and numerical methods is challenging and unfeasible for most external users.

We have developed a novel computational approach based on a combination of the lattice Boltz-
mann method and the mixed-hybrid finite element method for simulating component transport within
single-phase free flow. The lattice Boltzmann method (LBM) [B21] is a modern and efficient numerical
method capable of simulating numerous problems in computational fluid dynamics (CFD), including
turbulent fluid flows. The mixed-hybrid finite element method (MHFEM) [B6] is a well established
general numerical method for solving partial differential equations. In this work, we use the MHFEM
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7.1. Introduction

formulation presented in [A72] and extend it with the coupling to LBM.There are multiple reasons why
we pursue this approach:

• Both LBMandMHFEM individually have advantages compared to traditional numerical methods.
LBM is based on the mesoscopic description of the fluid and the computational algorithm avoids
the solution of Poisson equation for pressure [B21], which is the most time consuming part of
algorithms based on finite difference methods (FDM) or finite volume methods (FVM). On the
other hand, MHFEM is a general method that combines different finite element approximations
of scalar as well as vector functions. For some problems, it may provide higher accuracy and
robustness compared to standard FEM or FVM approaches [A149, A187].

• Both LBM and MHFEM individually can be efficiently parallelized and implemented for modern
high-performance architectures, including GPU accelerators. All computations in the coupled
LBM-MHFEM solver can be executed entirely on a GPU accelerator in order to utilize its compu-
tational power and avoid the hardware limitations caused by slow communication between the
GPU and CPU over the PCIe bus.

• The coupled solver can utilize vast computational resources available on typical supercomputers
by decomposing the domain and dividing the computation between multiple workers (GPUs)
which communicate over the Message Passing Interface (MPI) [M15].

Verification of the developed approach against exact solutions is not possible, since there are no
known exact analytical solutions for a coupled system of Navier–Stokes and transport equations. We
therefore turn to controlled experimental data for model validation purposes, specifically posing this
effort in terms of the problem of bare-soil evaporation, a key component of Earth’s hydrologic, carbon,
and energy balances [B8]. In this context, airflow has been shown to be a strong forcing parameter
responsible for driving the process evaporation from bare soils or any porous medium [A102, A166].
Given the complexity of near-surface airflow, evaporation estimates in practice rely on simplified flow
parameterizations or sparse wind measurements. We pose that the development of the combined LBM-
MHFEM flow and transport model herein could support these issues by providing a way to simulate
near-surface flow fields and subsequent above-ground vapor transport with a high level of fidelity, in
turn improving evaporation estimates [A167].

The data used for validation in this thesis include velocity and relative humidity profiles measured
in a low speed, climate controlled wind tunnel where 3D turbulent flow above a soil surface with
cuboidal bluff bodies were investigated in [A168]. The wind tunnel used for these measurements was
designed specifically for the investigation of coupled soil–plant–atmosphere processes as soil-test beds
containing any desired soil(s) and vegetation can be interfaced at a sufficiently large scale along a 7.4m
long test-section.

This chapter focuses on the validation of the coupled numerical scheme developed in Chapter 6
using experimental data obtained in controlled environments and simplified flow geometry. While
we present this investigation in terms of a bare-soil evaporation problem, it is important to note that
with relatively minor modifications this numerical solver could be expanded to support a wide range
of applications currently being investigated by the authors, including: heat transfer in the context of
disturbed environments, training AI/ML super-resolution algorithms, dust forecasting and mitigation
efforts, and greenhouse gas loading. More importantly, the work presented herein should be viewed
as the initial steps toward the development of a flexible numerical solver that can be used to support
fundamental process understanding and exploration, guide sensitivity analysis for measurements in
regions with high uncertainty, inform sampling in future experimental effort or help fill gaps in datasets
where it was not possible to make measurements.
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7.2. Problem formulation

7.2 Problem formulation

In this section, the background for numerical simulations is introduced, namely the experimental
facility and procedures are described, and the mathematical model is formulated.

7.2.1 Experimental setup and methodology

All experimental data used in this thesis and the paper [A111] were generated in the Center for
Experimental Study of Subsurface Environmental Processes (CESEP) wind tunnel–porous media test
facility now located at the US Army Engineer Research and Development Center (ERDC) Synthetic
Environment for Near-Surface Sensing and Experimentation (SENSE) Research Facility. The facility is
centered around a closed-circuit, climate-controlled, low-speed wind tunnel that can be interfaced with
soil test-beds of varying size. The test facility was designed specifically for the investigation of coupled
soil–plant–atmosphere processes, including air flow and heat and mass transport at a 1:1 scale; the
wind tunnel meets similarity criteria and is therefore suitable for momentum scaling studies as well.
A brief description of the components relevant to this work is presented below for the convenience of
the reader. Details concerning the test facility can be found in [A166, A169].

The wind tunnel was interfaced with a 7.15m long and 0.3mwide soil test-bed along the centerline
of its 7.4m long, 1m wide, and 1m tall test-section. The experimental datasets of [A168] were chosen
for model validation due to their use of synthetic plants (i.e., porous limestone blocks) instead of living
vegetation. This approach significantly simplified the airflow component of the problem (i.e., the plant
can be treated as a traditional bluff body) while still retaining key hydrodynamic characteristics. The
dimensions of each block were nominally (3.15×3.15×29.5)±0.1 cm and they were planted in a vertical
position (10.0 ± 0.3) cm deep, leaving the 19.5 cm high part above ground.

A total of three experimental configurations featuring two synthetic plants were explored by
[A168]. Each configuration was characterized in terms of the spacing between the two synthetic plants:
15 cm spacing (EX-1), 45 cm spacing (EX-2), and 105 cm spacing (EX-3). The positions of the synthetic
plants in these configurations are given by:

• EX-1 (15 cm spacing): GI = −5.197m, GII = −5.047m,

• EX-2 (45 cm spacing): GI = −5.647m, GII = −5.197m,

• EX-3 (105 cm spacing): GI = −6.247m, GII = −5.197m.

Note that in the coordinate system used hereafter, G = 0m corresponds to the upstream entrance of the
test-section of the wind tunnel (right hand side), G = −7.4m corresponds to the downstream exit of the
test section (left hand side), I = 0m corresponds to the ground surface and ~ = 0m corresponds to the
centerline of the test-section. At the time that the datasets associated with [A168] were generated, the
authors did not have access to a LiDAR system that could scan the exact position of the bluff bodies.
Uncertainty of the placement of the bluff bodies is thus given as XGI = XGII = X~ = ±5mm. The
maximum deviatory angle of attack of the bluff bodies relative to the direction of the flow is similarly
given as 5◦.

During each experiment, the mean wind speed, air temperature, and relative humidity of the
air entering the test-section was controlled and continuously monitored. Given the coupling of the
test-section with the partially saturated soil test-bed, a variable temperature and vapor gradient was
observed above the soil tank. The soil temperature was controlled by varying the exterior temperature
of the soil test-bed and the soil moisture was hydrostatically distributed and allowed to freely evaporate.
Table 7.1 provides a summary of the average soil, surface and air temperatures in the experiments.
Variability around the mean value was caused by the cycling of the individual climate control systems
(i.e., heater, chiller, humidifier, dehumidifier) throughout the duration of the experiments. The exterior

109



7.2.2. Mathematical model

Table 7.1: Experimental climate conditions.

EX-1 EX-2 EX-3

Mean Air Temperature [℃] 25.83 ± 1.52 25.70 ± 1.06 23.98 ± 0.21
Mean Surface Temperature [℃] 22.10 ± 0.23 23.50 ± 0.80 22.07 ± 0.03
Mean Soil Temperature [℃] 20.72 ± 0.31 22.40 ± 0.18 20.92 ± 0.11

temperature of the soil test-bed and barometric pressure were also measured through out the experi-
ments; the reader is referred to [A168, A169] for more details.

The measurements of [A168, A169] are available as a public dataset [O36]. Note that only a
subset of these measurements is relevant for the purpose of this chapter, namely the airflow properties
(velocity, RMS, Reynolds stress) and relative humidity above the soil surface. Given the size of the
domain and the experimental setup, the number of airflow and relative humidity measurements were
necessarily constrained. The locations of airflow and relative humidity were varied between the three
configurations based on the spacing distance between the synthetic plants and the resulting flow regime
created. The measurement locations are highlighted in the figures in Section 7.4. The laser used to
make the flow measurements was mounted on an automated traverse located outside the wind tunnel
test-section. Uncertainty in the exact location where the measurements were made can be given as
XG = X~ = ±5mm and XI = ±1mm. The sensor used to measure relative humidity was similarly
mounted on an automated traverse located within the test-section; uncertainty associated with this
system is given as XG = ±10mm and X~ = XI = ±5mm.

Air flow statistics (i.e., velocity, turbulence intensity, Reynolds stress) above the soil surface were
measured using two-dimensional laser Doppler velocimetry [A169], providing high frequency data
with an accuracy of 5 %. Relative humidity was measured with an accuracy of ±0.03 using a relative
humidity–temperature (RHT) sensor constructed by the University Corporation of Atmospheric Re-
search. Compared with the laser, these RHT sensors have a significantly lower sampling rate (≈ 1Hz);
data collected over a 30 second window were averaged at each measurement location [A169].

Furthermore, water loss from the wetted surface of the synthetic plants was measured in a separate
small scale experiment [A169]. These data were used to calculate an average mass flux of Φ★ =

0.128 g cm−2 d−1; this value was assumed to be applicable to all three configurations given similarity in
applied climate conditions.

7.2.2 Mathematical model

The air flow in the free space above the soil surface is governed by the Navier–Stokes equations. As
the model targets low Mach number situations (Ma ≈ 0.003 in the wind tunnel), the fluid is considered
to be incompressible [A60, A127]. For convenience, we copy Equation (6.1) here from Chapter 6. The
momentum and mass conservation laws for the air are therefore represented by

∇ · v = 0, (7.1a)

mv

mC
+ v · ∇v = − 1

d
∇? + aΔv, (7.1b)

where v = [EG , E~, EI] [ms−1] is the air velocity, ? [Pa] is the pressure, d [kgm−3] is the air density,
and a [m2 s−1] is the kinematic viscosity of the air. In general, these quantities are given as functions
of spatial coordinates x = [G,~, I] ∈ Ω1 ⊂ R3 and time C ∈ (0, Cmax).

The mass conservation law for a component U within a gas mixture in Ω2 × (0, Cmax) can be derived
[B4] and written as

mdU

mC
+ ∇ · (dUv + PU ) = 0, (7.2)
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7.2.2. Mathematical model

Table 7.2: Model parameters for air under standard atmospheric conditions (25 ◦C and pressure of 1 bar).

Density d [O7] 1.184 kgm−3

Kinematic viscosity a [O7] 15.52 × 10−6m2 s−1

Molecular diffusivity ��2$
of water vapor in air [A132] 25.52 × 10−6m2 s−1

where dU [kgm−3] is the density of the component U and PU [kgm−2 s−1] is the diffusive flux. As in
Equation (7.1a), no sources/sinks are considered in Equation (7.2). The diffusive flux is given by the
Fick’s law [B4] as

PU = −d�U∇lU , (7.3)

where �U [m2 s−1] denotes the molecular diffusivity coefficient of the component U in the mixture and
lU = dU/d [-] is the mass fraction of the component U in the mixture.

In this work, we consider a single component U ≡ H2O representing water vapor dispersed in air.
The component density dU corresponds to the absolute humidity (i.e., the mass of the water vapor per
unit volume) and the mass fraction lU corresponds to the specific humidity. The relative humidity q
[-] is defined as

q =
?U

?
∗
U

, (7.4)

where ?U [Pa] is the partial pressure of water vapor in the mixture and ?∗U [Pa] is the equilibrium vapor
pressure of water over a flat surface of pure water at a given temperature. Assuming that the mixture
behaves as an ideal gas at constant temperature ) [K], the ideal gas law ?U = dU'U) with the specific
gas constant 'U [J kg−1 K−1] means that the partial pressure ?U is proportional to the absolute humidity
dU and thus the relative humidity equals

q =
dU

d
∗
U

, (7.5)

where d∗U [kgm−3] is the saturated absolute humidity corresponding to ?∗U . Using dU = qd
∗
U , Equa-

tion (7.3) and the assumption of constant density d , Equation (7.2) transforms to the conservative
transport equation

mq

mC
+ ∇ ·

(
qv − ��2$

∇q
)
= 0. (7.6a)

Based on the experience from Chapter 6, we also combine Equations (7.1a) and (7.6a) to derive the
non-conservative form

mq

mC
+ v · ∇q − ∇ ·

(
��2$

∇q
)
= 0. (7.6b)

Note that Equation (7.6) looks formally the same as Equation (6.2), but here the quantityq has a physical
interpretation.

Although a slightly variable temperature distribution above the soil tank was observed during the
experiments [A168], we assume its impact on the density, kinematic viscosity, molecular diffusivity, and
relative humidity to be negligible compared to the sensor accuracies. The isothermal model given by
Equations (7.1) and (7.6) is used with constant parameters d , a , and��2$

. Furthermore, the fluid density
d is assumed to be independent of the relative humidity q and the effect of gravity is neglected due to
the dimensions of the experimental facility. Model parameters for air under standard atmospheric
conditions are given in Table 7.2.

For the purpose of this thesis we are interested in simulating only the free flow region, where the
soil-atmosphere and synthetic plant (bluff body)–atmosphere interfaces are treated using boundary
conditions (described in Section 7.2.3). Hence, the computational domains Ω1 and Ω2 are considered
as shown in Figure 7.1. Based on the experimental setup described in Section 7.2.1, the computational
domain Ω1 is defined as an inset of the whole test-section starting at a downstream distance of−3.507m
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7.2.3. Boundary conditions

Figure 7.1: Illustration of the computational domains Ω1 and Ω2 for Equations (7.1) and (7.6). Note
that Ω1 conforms to the actual dimensions (width and height) along a 3.89m length of the wind tunnel
test-section where experimental measurements were made.

from the test-section inlet. The total dimensions of Ω1 are approximately 3.89m × 1m × 1.13m. The
upper side of the domain Ω1 coincides with the inclined ceiling of the wind tunnel; the back and front
sides coincide with the test-section walls. The bottom boundaries of both domains Ω1 and Ω2 coincide
with the soil surface in which the two synthetic plants were planted as illustrated in Figure 7.1. The
dimensions of the subdomain Ω2 are 2.94m × 0.7m × 0.5m.

Note that Equation (7.1) is solved in domain Ω1 and Equation (7.6) is solved in domain Ω2. Since
Equations (7.1) and (7.6) are coupled only via the velocity field v, Equation (7.1) can be solved without
Equation (7.6) and the latter can be solved only in a subdomain of Ω1, i.e., Ω2 ⊂ Ω1.

Both Equations (7.1) and (7.6) must be supplemented by initial and boundary conditions suitable
for this problem. In all simulations presented in this chapter, the velocity field was initialized by zero
(v (x, 0) = 0) and the initial relative humidity profile varied with height as q (x, 0) = qin(I), where
qin(I) determines the inflow boundary condition for relative humidity (see Subsection “Inflow: relative
humidity profile” on Page 114). Boundary conditions for the simulations are discussed in the following
section.

7.2.3 Boundary conditions

Various boundary conditions are used throughout the simulations. The sides, ceiling, and floor (includ-
ing soil) of the test-section are impermeable and thus modeled using the standard no-slip boundary
condition. A simple outflow condition based on a fixed pressure value and a zero velocity gradient
in the normal direction is used on the left hand side of the domain in Figure 7.1. On the right hand
side of the domain Ω1 in Figure 7.1, the inflow boundary condition for velocity v is prescribed. Two
types of inflow boundary conditions are considered in this work with details provided in the following
subsections.

The domain Ω2 in Figure 7.1 has an inflow boundary on the right hand side where a height-
dependent profile qin(I) for the relative humidity q is prescribed; see Subsection “Inflow: relative
humidity profile” below for details. Furthermore, the value qin(0) is used also for the fixed-value
boundary condition at the bottom side of the domain Ω2 that coincides with the interface between the
soil tank and free space. On all remaining sides of the domain Ω2 (i.e., on the free-stream boundaries),
a zero gradient of the relative humidity q is prescribed.

The final Subsection “Synthetic plants” below addresses boundary conditions applied on the syn-
thetic plants to model ”transpiration”.
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Inflow: mean velocity profile

Inflow: mean velocity profile

Using this boundary condition, a time-constant inflow velocity profile approximating the mean
free flow velocity measured in the wind tunnel is prescribed. The inflow velocity is set to vin =

[−Ein,G (I), 0, 0], where the component Ein,G is specified as a function of height I [m] based on the 1/7-th
power law [B34]:

Ein,G (I) =


Emax

(
I

IX

) 1
7

if I ≤ IX ,

Emax

(
Imax − I
IX

) 1
7

if Imax − I ≤ IX ,

Emax otherwise,

(7.7)

where Imax = 1.0624m is the height of the computational domain at the inflow boundary, IX = 0.1m is
the estimated boundary layer height and Emax = 0.8m s−1 corresponds to the mean free stream velocity
in thewind tunnel. The parameters were chosen based on the experimentallymeasured velocity profiles
and the same values are used in all three spacing configurations.

Inflow: velocity fluctuations

Direct numerical simulations (DNS) of turbulent flow in a regular domain require sufficiently high
resolution and large domain size, otherwise the turbulent boundary layer may not fully develop and
the simulation may give wrong results. As will be seen in Section 7.4, prescribing a time-constant
velocity profile at the inflow boundary may lead to non-physical results, because the simulated flow
field may remain laminar until it reaches the first obstacle placed in the domain. An alternative is to
turn away from the DNS approach and add synthetic fluctuations to the velocity profile prescribed
on the inflow boundary, which should help induce turbulent flow and let the boundary layer develop
faster.

The inflow velocity vin = vin(x, C) is decomposed as

vin(x, C) = vin(x) + v′in(x, C), (7.8)

where vin(x) is the mean (time-averaged) value given in Subsection “Inflow: mean velocity profile”
above, and v′in(x, C) is the velocity fluctuation. The field v′in(x, C) is generated using the algorithm
described in Appendix G with the following parameters. The turbulent length scale is set to one half of
the inflow boundary layer IX used in Equation (7.7), i.e., Lint = 0.05m. The number of discrete modes is
#modes = 3000, the turbulent kinetic energy is :in = 10−2m2 s−2, and the kinematic viscosity a is given
in Table 7.2. Time correlation is introduced with the turbulent integral time scale Tint = Lint/Emax,
where Emax is the mean free stream velocity specified in Subsection “Inflow: mean velocity profile”.

Note that the fluctuations generated with the aforementioned procedure are isotropic, which is an
acknowledged simplification of anisotropic real-world turbulence. The procedure could be improved
based on a specified anisotropic Reynolds stress tensor [O6], however, even using the inflow condition
based on isotropic synthetic turbulence lead to improved results in this work. Experimentally, the
problem was treated as 2D, i.e., the transverse flow statistics, such as the components E ′~E

′
~ , E

′
GE

′
~ , and

E
′
~E

′
I of the Reynolds stress tensor, were not quantified.
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Inflow: relative humidity profile

In case of the subdomain Ω2, the inflow boundary condition for relative humidity q is specified as a
function qin(I) of height I [m]:

qin(I) =


qmax + qlin

Ipow − I
Ipow

if I ≤ Ipow,

qmax − (qmax − qmin)
(

I−Ipow
Iconst−Ipow

)W
if I > Ipow and I ≤ Iconst,

qmin if I > Iconst,

(7.9)

where the common parameters qlin = 0.01 and Ipow = 0.005m describe the profile below the minimal
height for measurements, Iconst = 0.195m corresponds to the height of the synthetic plants, and
the remaining parameters qmin, qmax, W are fitted values to the experimental data (see Table 7.3 and
Figure 7.2).

Table 7.3: Values of fitted parameters qmin, qmax, W for the relative humidity inflow boundary condi-
tion (7.9).

EX-1 EX-2 EX-3

qmin 0.236 0.230 0.217
qmax 0.270 0.275 0.265
W 0.184443 0.262402 0.402284

Synthetic plants

Water loss does not occur homogeneously on the surface of the synthetic plants since a capillary fringe
of fully wetted surface was observed at the bottom of the plants. Therefore, water vapor is released
with higher concentration near the soil surface and the top part of the plants is in equilibrium with
the ambient environment. This is modeled in the simulations by prescribing a height-variable relative
humidity profile on the sides of the synthetic plants as depicted in Figure 7.3. Based on the experiments,
the capillary fringe height is approximately Imin = 3.5 cm. The prescribed relative humidity is qmax = 1
below Imin and qmin = qin(0.195) above 2Imin, where the ambient relative humidity qmin is set to the
value prescribed on the inflow in the height of the synthetic plants. We also assume a transition part
between Imin and 2Imin where the surface is not fully wetted and the prescribed relative humidity decays
linearly from qmax to qmin.

To match the experimentally measured mass flux Φ★ (see Section 7.2.1), we also need to prescribe
a non-zero velocity in the normal direction on the sides of the plants. For example, given the mean
relative humidity qmean = 0.437 from Figure 7.3b and assuming that saturated air has absolute humidity
of 23 gm−3 at 25 ◦C, the mass flux Φ★ corresponds to the velocity +★ = 1.5mm s−1. The velocity +★ is
prescribed only on the downstream side of each synthetic plant as a constant profile EG = −+★, which
coincides with the direction of the mean flow. On the remaining sides of the plants, the standard no-
slip condition is used as we do not model advective transpiration on these sides for simplicity. On the
upstream side, the velocity would have to be prescribed in the direction opposite to the mean flow,
and on the sides parallel to the mean flow it would have to be prescribed in the tangential direction.
However, water vapor is still released diffusively from the sides where the no-slip condition is used.

114
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(b) EX-2
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(c) EX-3
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Figure 7.2: Relative humidity profiles prescribed at the inflow boundary in the spacing configurations
EX-1, EX-2, and EX-3.
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(c) EX-3
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Figure 7.3: Relative humidity profiles prescribed as the boundary condition on the synthetic plants in
the spacing configurations EX-1, EX-2, and EX-3.
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7.3 Computational methodology

The coupled LBM-MHFEM solver described in Chapter 6 is used for the numerical solution of Equa-
tions (7.1) and (7.6b). Based on the experience from the previous chapter, the non-conservative form of
the transport equation is used rather than the conservative form. The use of a regular lattice for the flow
domain discretization is currently the main limiting factor for the flexibility of the solver, because extra
care must be taken when setting up a simulation to ensure proper alignment of immersed boundaries
such as the synthetic plants used in this chapter. This could be improved by using interpolated boundary
conditions for LBM [B21], they are however not yet implemented in our solver. On the other hand,
the MHFEM part of the solver can be used on complex domain geometries with unstructured mesh
discretizations. In this chapter, we use conforming unstructured cuboidal meshes that are refined
around the synthetic plants immersed in the domain.

The configuration of the solver is similar or the same as described in the previous chapter. Based on
the results from Section 6.5, we use the linear interpolation of the velocity field and the explicit upwind
scheme in MHFEM. Discrete boundary conditions are applied based on the continuous description
from Section 7.2.3. In the MHFEM scheme, Dirichlet-type conditions are used to prescribe fixed values
of relative humidity and the Neumann-type condition for the diffusive flux is used to prescribe zero
gradient in the normal direction, see Section 4.2.6 for details. The following approaches are used the
LBMpart. We use the full-way bounce-back boundary condition [B21] to prescribe the no-slip condition
on impermeable walls. The boundary condition for velocity on the downstream faces of synthetic plants
(see Subsection “Synthetic plants” on Page 114) is realized via themodified bounce-back condition [B21]
by specifying zero tangential and small non-zero normal velocity of the moving wall. On the inflow,
the discrete distribution functions are approximated by the discrete equilibrium functions evaluated
from the known macroscopic variables [A93, A121, A139]. On the outflow, the extrapolation outflow
boundary condition is used to approximate the discrete distribution functions.

All three experimental configurations were simulated up to the final time Cmax = 100 s using single
precision for air flow and double precision for vapor transport in three different resolutions, hereafter
denoted as RES-1, RES-2, and RES-3. A reference lattice and mesh were generated for the initial
resolution RES-1 and the space step is halved with each subsequent resolution. The simulations were
computed on the cluster operated by the Research Center for Informatics (http://rci.cvut.cz/). The
compute node was equipped with two AMD EPYC 7763 processors and eight NVIDIA Tesla A100 GPU
accelerators with NVLink interconnection. The decomposition algorithm for overlapped lattice and
mesh described in Section 6.4 was used. See Table 7.4 for the characteristics of each resolution and
computational resources needed for the simulations.

Tomatch the experimentalmethodology described in Section 7.2.1, time-averagingwas employed to
produce statistical quantities such as the mean and variance of the flow velocity and relative humidity.
Time-averaging is implemented as part of the simulation codewhere statistical quantities are updated in
every time step using the Welford’s online algorithm [A45, A126, A179]. Note that no space-averaging
is applied to the simulation results.

7.3.1 Computational performance analysis

To demonstrate the computational efficiency of the implemented LBM-MHFEM solver, we performed a
strong scaling studywhose results are shown in Table 7.5 for the experimental configuration EX-1 in the
resolution RES-2. Due to limited availability of the computational resources, the performance scaling
analysis could be performed with only 8 GPUs on one node of the cluster. Same as in Chapter 5, the
performance is evaluated in GLUPS (giga-LUPS, billions of lattice updates per second). Note that for the
coupled solver, GLUPS is calculated by taking only the lattice size as the amount of work and dividing it
by the total computational time (i.e., LBM plus MHFEM). While the metric with ignored mesh size does
not fully express the performance of the coupled solver, it allows to directly compare the slowdown
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7.3.1. Computational performance analysis

Table 7.4: Characteristics of each resolution used for presented simulations. The computational times
were achieved using 8 NVIDIA Tesla A100 cards with NVLink interconnection. The total computational
time is broken down to cumulative contributions from LBM computation, velocity interpolation, and
MHFEM computation; the remaining time includes initialization and output of the data.

RES-1 RES-2 RES-3

Lattice space step 7.88mm 3.94mm 1.97mm
Lattice dimensions 496 × 96 × 144 991 × 224 × 288 1981 × 480 × 575
No. of lattice sites approx. 7 × 106 approx. 64 × 106 approx. 547 × 106

No. of mesh cells approx. 1.5 × 106 approx. 12 × 106 approx. 96 × 106

Total memory 2.5 GiB 24 GiB 200 GiB
Base time step ΔC 1.33 × 10−3 s 3.33 × 10−4 s 8.32 × 10−5 s
Average no. of LBM iters per
MHFEM step (b�max/�c)

1 2 4

Computational time 10 min 65 min 15 h 12 min
– LBM computation 1 min 11 min 6 h 8 min
– velocity interpolation 46 s 2 min 30 min
– MHFEM computation 4 min 30 min 7 h 54 min

due to coupling compared to a standalone LBM solver. The performance of the coupled solver achieved
in Table 7.5 is about 5-6× lower compared to the results in Table 5.3 for a standalone LBM solver. The
efficiency decreases with increasing the number of GPUs used in the computation, which is a typical
behavior in strong scaling analyses caused by reduced work per GPU and increased communication-
to-work ratio. The coupled solver also requires a more complicated domain decomposition resulting in
worse load balance between multiple GPUs and higher computational cost compared to a standalone
LBM simulation. Considering that our implementation is limited by the one-dimensional domain
decomposition of the lattice, the 80% efficiency achieved on 8 GPUs is a satisfactory result. Higher
efficiency can be expected for weak scaling studies where the amount of work is kept proportional to
the number of GPUs. However, we were not able to investigate it due to limited availability of the
computational resources. Also note that due to the adaptive time stepping strategy used in the coupled
solver, it is not straightforward to analyze the weak scaling, because the performance of the solver
depends on the number of time steps where MHFEM is executed, which would be different for each
problem size.

Table 7.5: Strong scaling of the coupled LBM-MHFEM solver for the scenario EX-1 in the resolution
RES-2. #GPUs denotes the number of NVIDIA Tesla A100 GPUs used in the computation, the Time
column includes the computational time without initialization, the performance metric GLUPS stands
for billions of lattice updates per second and �55 denotes the parallel efficiency.

#GPUs Time [min] GLUPS �55

1 392 1.0 1.00
2 202 1.9 0.96
4 110 3.7 0.92
8 62 6.4 0.80
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7.4 Validation results

Before describing the validation results themselves, let us summarize the methodology used for com-
paring simulation results with the physical experimental data.

In each experiment, data was collected pointwise in a series of one-dimensional vertical profiles
at multiple locations streamwise along the length of the wind tunnel test-section in the ~ = 0 plane.
The sparsity of these datasets prevents a reliable reconstruction of the flow field that can be compared
quantitatively with the three-dimensional simulation results. To address this issue, simulation data
were extracted at the same locations as the experimentally measured vertical profiles for direct quan-
titative comparison of the results.

While not as informative as a point-by-point comparison, a qualitative comparison of the simulated
flow field with interpolated experimental data in 2D is still important for ensuring that the model is
able to capture general patterns and behavior. Qualitative comparison is especially important when all
of the different forms of experimental uncertainty associated with the measurements are considered.
For example, the qualitative comparison via 2D flow fields might reveal whether the data considered
for point-by-point quantitative comparison is translated in either the horizontal or vertical direction.

As previously discussed, relative humidity and flow statistics were measured with accuracies of
±0.03 and 5 %, respectively. It should be noted that there are a large number of variables at play with
respect to the experimental setup and methodologies employed by [A168]. Collectively, these are not
accounted for in the model and are the likely explanation for any of the observed differences between
the experimental and simulation results. A summary of possible factors contributing to experimental
uncertainty include:

• The low sampling frequency of relative humidity measurements leads to a smearing effect due to
spatio-temporal averaging of the vapor transport in the streamwise direction.

• The reliance on a sensor immersed in the flow to measure relative humidity is furthermore inva-
sive, its presence disturbs the flow field locally and therefore the relative humidity distribution.
The impact of the sensor was not quantified by [A168].

• The climate controls (i.e., heater, chiller, humidifier, dehumidifier) continuously fluctuated during
the experiments, typically by no more than temperature ±1 ◦C, relative humidity ±0.03, and
velocity ±0.05m s−1. This can lead to momentary increases or decreases in any of the afore-
mentioned atmospheric variables. This variability is accounted for in the validation study by
comparing statistical quantities (mean average and root-mean-square).

• Uncertainty in the physical placement of the bluff bodies within the test-section, see Section 7.2.1.
The model and physical experiments may therefore differ slightly. Note that the measurements
did not explore variability in the transverse direction (i.e., ~-axis).

• Uncertainty in the physical locations where the flow and relative humidity measurements were
made due to the accuracy of the automated traversing systems. If the laser was not perfectly
centered behind a synthetic plant for example, it would measure slightly different flow behavior
than it would otherwise. See Section 7.2.1 for more details.

• Uncertainty in the exact angle of the laser beams. If the beams were not exactly perpendicular
to the flow, there could be some resulting skewness in the measured flow properties.

Finally, we would like to emphasize that the aim of the validation study is not to exactly reproduce
the experimental results of [A168], nor is this even a feasible task since every model is a simplification
of its prototype and thus cannot reproduce all of its characteristics [A61]. Our goal is to instead ensure
that the model is able to capture the general patterns and behavior observed in the experimental data.
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7.4.1 Qualitative comparison via 2D flow fields

Upon investigation of the velocity profiles from simulations using the time-constant (i.e., steady) inflow
velocity profile given by Equation (7.7), we noticed that in the configurations EX-2 (45 cm spacing)
and EX-3 (105 cm spacing), vortical structures induced by the flow around obstacles were different
immediately behind the first and second synthetic plants. The difference is caused by the fact that
when steady flow is prescribed at the inflow boundary, the flow immediately before the first plant is
still steady, whereas the flow reaching the second plant is already turbulent. This scenario is non-
physical, since natural air flow measured in the experiments was turbulent (Re > 104). In order to
introduce additional realism to the simulations and to address the above issue, the inflow velocity
profile was modified through the inclusion of synthetic fluctuations as described in Subsection “Inflow:
velocity fluctuations” on Page 113. The effect of small perturbations on the inflow boundary is that they
enhance the development of the turbulent boundary layer in simulations with limited spatial resolution
and domain size. A qualitative comparison of the mean horizontal velocity (EG ) fields simulated in
the highest resolution RES-3 using both steady (time-constant) and unsteady (time-varying) boundary
conditions is presented for the configurations EX-2 and EX-3 in Figure 7.4. Vortical structures caused by
recirculating flow are observed downstream of both synthetic plants regardless of the applied boundary
condition, but the overall size of this recirculating region is affected by the boundary condition. The
steady inflow velocity boundary condition leads to the development of a region with low velocity
downstream of the first plant in the flow direction that is larger than that observed when the time-
varying boundary condition is applied. When these results are compared with the experimental data
(i.e., the vertical columns in Figure 7.4), it is clear that the time-varying boundary condition captures
the observed behavior better. Hence, only the time-varying inflow boundary condition is considered
for the results discussed hereafter.

The profiles of mean horizontal and vertical velocity (EG and EI), root-mean-square of the turbulent
horizontal and vertical velocity (RMSG and RMSI), and mean relative humidity (q) along the plane
~ = 0 are shown in Figure 7.5 for EX-1, Figure 7.6 for EX-2, and Figure 7.7 for EX-3. In all three cases,
the background color corresponds to the high-resolution simulation (RES-3) and the narrow vertical
columns highlight superimposed experimental data measured at the corresponding locations.

The flow field observed around the synthetic plants depends on the spacing between the roughness
elements [A182]:

• In the closest spacing configuration (EX-1, Figure 7.5), the downstream synthetic plant is located
within the turbulent wake of the upstream plant. In this scenario, stable vortices are formed
between the plants and the regime is termed skimming flow.

• In the intermediate spacing configuration (EX-2, Figure 7.6), the wake created by the upstream
plant does not fully develop before the flow reaches the downstream plant and affects the flow
around it. Thus, this scenario is termed wake interference flow.

• In the widest spacing configuration (EX-3, Figure 7.7), the synthetic plants are spaced sufficiently
far apart so as to allow for full development of individual wake zones. This flow regime is termed
isolated roughness flow.

These flow regimes can be clearly discerned in the simulated flow fields shown in Figures 7.5 to 7.7. The
skimming flow and the isolated roughness flow regimes seem to be captured well by the high-resolution
simulation (RES-3). As discussed at the beginning of this section, the horizontal position of the wakes in
the wake interference and isolated roughness flow regimes is affected by the inflow boundary condition
used in the simulation. While the width of the simulated upstream wake in the isolated roughness
flow regime (Figure 7.7) is in good agreement with the experiment, it is underestimated in the wake
interference flow regime (Figure 7.6). Aside from this disagreement, the wakes formed behind the
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(a) EX-2: 45 cm spacing, time-constant inflow velocity profile

(b) EX-2: 45 cm spacing, time-varying inflow velocity profile

(c) EX-3: 105 cm spacing, time-constant inflow velocity profile

(d) EX-3: 105 cm spacing, time-varying inflow velocity profile

Figure 7.4: Simulated mean horizontal velocity (EG ) fields along the plane ~ = 0 with overlain 1D
velocity profiles for the configurations EX-2 (45 cm spacing) and EX-3 (105 cm spacing). The velocity
profile prescribed at the inflow boundary was either time-constant (Figures 7.4a and 7.4c) or time-
varying (Figures 7.4b and 7.4d). Only a small region of interest around the synthetic plants is shown
to improve visibility. The background color corresponds to the high-resolution simulation (RES-3);
vertical columns show experimental data.

downstream plant as well as flow profiles far away from the plants are qualitatively in good agreement
with the experiments in all three scenarios.

In the case of relative humidity, the greatest differences between experiments and simulations occur
in the vertical profiles measured immediately downstream of the synthetic plants (i.e., on the left side
of the gray rectangles in the figures). In the following section, we will quantify the differences in the
profiles immediately downstream of the first plant and compare themwith the measurements accuracy.

Note that all figures presented in this section correspond to simulations performed in the highest
resolution RES-3. For completeness, additional 2D flow fields obtained in the lower resolutions RES-1
and RES-2 can be found in the supplementary materials for the paper [A111].
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7.4.1. Qualitative comparison via 2D flow fields

Figure 7.5: Simulated flow fields along the plane ~ = 0 with overlain 1D profiles: mean horizontal and
vertical velocity (EG and EI), root-mean-square of horizontal and vertical velocity (RMSG and RMSI),
and mean relative humidity (q) for the configuration with 15 cm spacing between synthetic plants
(EX-1). Only a small region of interest around the synthetic plants is shown to improve visibility.
The background color corresponds to the high-resolution simulation (RES-3); vertical columns show
experimental data.

122



7.4.1. Qualitative comparison via 2D flow fields

Figure 7.6: Simulated flow fields along the plane ~ = 0 with overlain 1D profiles: mean horizontal and
vertical velocity (EG and EI), root-mean-square of horizontal and vertical velocity (RMSG and RMSI),
and mean relative humidity (q) for the configuration with 45 cm spacing between synthetic plants
(EX-2). Only a small region of interest around the synthetic plants is shown to improve visibility.
The background color corresponds to the high-resolution simulation (RES-3); vertical columns show
experimental data.
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7.4.1. Qualitative comparison via 2D flow fields

Figure 7.7: Simulated flow fields along the plane ~ = 0 with overlain 1D profiles: mean horizontal and
vertical velocity (EG and EI), root-mean-square of horizontal and vertical velocity (RMSG and RMSI),
and mean relative humidity (q) for the configuration with 105 cm spacing between synthetic plants
(EX-3). Only a small region of interest around the synthetic plants is shown to improve visibility.
The background color corresponds to the high-resolution simulation (RES-3); vertical columns show
experimental data.
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7.4.2. Quantitative comparison via 1D graphs

7.4.2 Quantitative comparison via 1D graphs

In this section, the simulation results and experimental data are compared quantitatively in the vertical
columns immediately downstream of the first synthetic plant. For completeness, comparisons in the
other measurement locations are included in the supplementary materials for the paper [A111].

The graphs of the mean velocity (EG and EI) profiles are shown in Figures 7.8 to 7.10 and the graphs
of the relative humidity (q) profiles are shown in Figures 7.11 to 7.13. For convenience, the horizontal
position of each profile is indicated schematically by the red bar above each graph on the right hand
side. In each graph, the experimental data (red line) and simulation data in three resolutions (dark blue
line for RES-1, light blue line for RES-2, orange line for RES-3) are compared. The dashed lines indicate
the statistical deviation of the respective simulated quantity from its mean value (full lines). In case of
the measured velocity profiles in Figures 7.8 to 7.10, the statistical deviation is indicated by errorbars.
On the other hand, the low sampling frequency of the RHT sensors prevents any information on the
turbulent transport of the water vapor from being inferred from the data. In this case, the errorbars in
Figures 7.11 to 7.13 represent the sensor accuracy rather than statistical deviation of the samples.

The graphs in Figures 7.8 and 7.10 for the cases EX-1 and EX-3, respectively, show the best match
between the simulated velocity profiles and experimental data. It can be observed that of the three
resolutions compared in the graphs, the low-resolution simulation RES-1 differs the most from the
experimental data and the high-resolution simulation RES-3 is closest to the experimental data. For the
remaining case EX-2, the graphs in Figure 7.9 show larger differences that correspond to the qualitative
disagreement described in the previous section. The primary cause is presumably the uncertainty
related to the exact conditions in the experiment. Upon closer examination of the documentation from
this experiment, we found that the upstream plantmay have been planted not perfectly perpendicular to
the ground surface, whichwould result in different flow behavior around and above the plant. However,
there is no data that would allow us to reproduce this scenario in the simulation.

In case of the relative humidity profiles, the largest difference between the experimental data and
simulations is observed in Figure 7.11 for EX-1 where the simulated profiles are underestimated. These
results suggest that improvements could be made by modifying the boundary condition applied on the
plant. The boundary condition described in Subsection “Synthetic plants” on Page 114 is based on a
mass flux that was measured in a separate experiment under different atmospheric conditions [A169]
than those in the configurations EX-1, EX-2, and EX-3. Themass fluxes used in the model may therefore
underestimate the conditions actually present in the investigated scenarios. Furthermore, it should be
noted that when the plants are located close together, theymay compete for the limited resource [A168]
which might result in increased collective evaporation rate compared to the cases where the plants are
located far away from each other. In the cases EX-2 and EX-3 featuring different flow regimes, the
graphs in Figures 7.12 and 7.13 indicate that the simulation results are well within the accuracy of the
RHT sensors.
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Figure 7.8: Quantitative comparison of horizontal and vertical velocity profiles (EG and EI) at the first
position downstream of the first synthetic plant in the 15 cm spacing (EX-1). The red bar above each
graph highlights the position of the profile relative to the synthetic plants (dark rectangles) and other
measurement locations (thin gray bars).
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Figure 7.9: Quantitative comparison of horizontal and vertical velocity profiles (EG and EI) at the first
position downstream of the first synthetic plant in the 45 cm spacing (EX-2). The red bar above each
graph highlights the position of the profile relative to the synthetic plants (dark rectangles) and other
measurement locations (thin gray bars).
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Figure 7.10: Quantitative comparison of horizontal and vertical velocity profiles (EG and EI) at the first
position downstream of the first synthetic plant in the 105 cm spacing (EX-3). The red bar above each
graph highlights the position of the profile relative to the synthetic plants (dark rectangles) and other
measurement locations (thin gray bars).
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Figure 7.11: Quantitative comparison of relative humidity profiles (q) at the first position downstreamof
the first synthetic plant in the 15 cm spacing (EX-1). The red bar above the graph highlights the position
of the profile relative to the synthetic plants (dark rectangles) and other measurement locations (thin
gray bars).
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Figure 7.12: Quantitative comparison of relative humidity profiles (q) at the first position downstreamof
the first synthetic plant in the 45 cm spacing (EX-2). The red bar above the graph highlights the position
of the profile relative to the synthetic plants (dark rectangles) and other measurement locations (thin
gray bars).
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Figure 7.13: Quantitative comparison of relative humidity profiles (q) at the first position downstream
of the first synthetic plant in the 105 cm spacing (EX-3). The red bar above the graph highlights the
position of the profile relative to the synthetic plants (dark rectangles) and other measurement locations
(thin gray bars).
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Conclusion

The following sections summarize the results presented in the previous chapters and potential future
research directions.

1 Programming techniques for modern parallel architectures

In Chapter 1, we introduced various approaches for programming modern parallel architectures. First,
contemporary high-performance computing systems were introduced in a brief summary and the C++
programming language was selected for the work presented in the thesis. Then, we presented an
overview of common parallel programming frameworks and illustrated the implementation of a parallel
axpy operation in each framework. The Message Passing Interface for distributed computing was
also briefly described. Subsequently, we described several high-level parallel programming libraries
with backend systems that provide performance portability across multiple hardware platforms and/or
parallel programming frameworks. Examples of the parallel axpy operation in each library are included
for comparison with the frameworks. Finally, the Template Numerical Library was introduced and its
features, design, and future work were described.

2 Data structures

In Chapter 2, two efficient and configurable data structures from the Template Numerical Library were
described: multidimensional arrays and unstructured meshes. The section related to multidimensional
arrays amends the implementation described in the author’s Master’s thesis [B20] and thus it focuses
on describing the extension for distributed computing.

The section related to unstructured meshes provides a detailed description of the design and imple-
mentation of the data structure published in [A110] and its later extension for polygonal and polyhedral
meshes. The data structure is designed around sparse matrix formats for the representation of incidence
matrices, supports computations on CPUs aswell as GPUs, and supports distributed computing viaMPI.
Its efficiency was compared using several benchmark problems based on simple parallel algorithms.
Compared to the data structure available in the MOAB library, the primary benchmark using the TNL
data structure is about 13× faster for triangular meshes, 5× faster for tetrahedral meshes, 10× faster
for polygonal meshes, and 6× faster for polyhedral meshes. However, for the alternative benchmark
requiring more information from the mesh data structure, the factor rises up to 130× for tetrahedral
meshes. Furthermore, the results indicate good GPU utilization for all benchmarks and mesh types,
including polygonal and polyhedral.

3 Solution of sparse linear systems

In Chapter 3, we presented a review of iterative methods and preconditioning techniques for the
solution of sparse linear systems. Additionally, we presented an overview of software packages
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4. Mixed-hybrid finite element method

implementing related algorithms and described corresponding features available in the TNL library.
Finally, we described details related to the implementations of distributed sparse matrices in the TNL
and Hypre libraries.

4 Mixed-hybrid finite element method

In Chapter 4, we described a numerical scheme for the solution of a system of partial differential
equations in a general coefficient form, called NumDwarf. The scheme is based on the mixed-hybrid
finite element method (MHFEM) and the discontinuous Galerkin method for spatial discretization,
the Euler method for temporal discretization and the semi-implicit approach of the frozen coefficients
method for the linearization in time. The schemewas developed in [A72] originally for multicomponent
flow and transport phenomena in porous media. The chapter builds on the paper [A72] and author’s
Master’s thesis [B20], but includes more details and variants of the scheme, such as implicit upwind
stabilization for advective terms. The implementation of the scheme relies on the TNL library, especially
the data structure for unstructured meshes and all parallel computing capabilities.

The chapter briefly introduces the mathematical model of incompressible two-phase flow in porous
media and the generalized McWhorter–Sunada problem, which is used as a benchmark problem to
analyze the accuracy and computational performance of the scheme. The verification results show
first order of accuracy in the !1 and !2 norms in 2D and 3D. The benchmark was computed in several
configurations with varying parameters, namely the linear system solver, hardware architecture, and
programming framework for CPU parallelization. The results show the importance of a good solver for
systems of linear equations, which takes most of the computational time. The BiCGstab method with
the BoomerAMG preconditioner from the Hypre library performs several times faster than the Jacobi-
preconditioned BiCGstab method on CPU. Both variants have similar strong scalability based on the
increasing number of CPU cores. For GPU computations, the difference between the performance of
the BoomerAMG and Jacobi preconditioners is not as significant, but the former still performs better
and its advantage might be even more considerable for larger meshes.

5 Lattice Boltzmann method

In Chapter 5, we described the implementation of the lattice Boltzmann method and performance
optimizations necessary for its efficient use on distributed systems with GPU accelerators. All com-
ponents of the method are described with the objective to formulate the computational algorithm.
Two streaming schemes based on the A-B and A-A patterns are explained in detail and tested in a
performance benchmark. The optimizations include overlapping computation and communication,
pipelining for operations in the distributed data synchronization, and using CUDA streams and MPI
functions efficiently in the implementation.

A small computational benchmark was performed on several NVIDIA GeForce and NVIDIA Tesla
GPUs to evaluate the difference between the A-B and A-A streaming patterns. In almost all cases, the
A-A pattern performed better or slightly worse in terms of GLUPS, but its main advantage are halved
memory requirements for the storage of discrete distribution function values. A larger computational
benchmark was performed for the A-A pattern on the Karolina supercomputer using accelerated nodes
with 8 NVIDIA A100 GPUs each. The results show good strong scalability up to 8 nodes (64 GPUs)
using a 512 × 512 × 512 lattice in single as well as double precision. Two weak scaling studies with 1D
and 3D domain expansion show almost ideal scalability up to 16 nodes (128 GPUs), which is the most
that were tried in the benchmark.

An important limitation of the implemented solver is the one-dimensional domain decomposition;
implementation of a multi-dimensional decomposition algorithm is planned for the future. The per-
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6. Coupled LBM-MHFEM computational approach

formance of the solver in the strong scaling study is further limited due to dysfunctional GPUDirect
technology on the supercomputer. Another problem thatmay be important formodern supercomputers
is the optimal mapping ofMPI ranks to GPUs, which would consider non-uniform communication costs
between each pair of GPUs. This leads to the quadratic assignment problem, which is NP-hard, and the
weights approximating communication costs need to be measured experimentally or provided by a
network topology–aware hardware introspection tool.

6 Coupled LBM-MHFEM computational approach

In Chapter 6, we presented a coupled computational approach based on the combination of lattice
Boltzmann and mixed-hybrid finite element methods for the solution of the Navier–Stokes equations
coupled with a general system of advection–diffusion–reaction partial differential equations. The
work presented in this chapter explores new possibilities for efficient solution of various multiphysics
problems using modern hardware architectures.

Numerical details are provided for the coupled computational algorithm, time adaptivity, and
interpolation of the velocity field. Thanks to the TNL library, the solver can utilize modern GPU-based
high-performance computing systems. For optimal utilization of computational resources, we designed
a domain decomposition algorithm for overlapped lattice and mesh, which allows to optimize the
computational cost andmemory requirements of eachMPI rank at the cost of increased communication
due to increased number of lattice subdomains. The decomposition algorithm is essentially one-
dimensional and its generalization to improve the scalability on large supercomputers may be subject
of future research.

A simple benchmark problem based on a highly turbulent velocity field and a linear advection–
diffusion equation with an analytical solution was designed to analyze the accuracy of the coupled
numerical scheme. The results show that the numerical schemes for the conservative and non-
conservative forms of the advection–diffusion equation do not behave equivalently. Thanks to a term
that compensates for non-zero velocity divergence, the accuracy of the non-conservative scheme is
better by about 10 orders of magnitude in the benchmark. Furthermore, the benchmark shows small
differences between linear and cubic interpolation schemes and between explicit and implicit upwind
stabilization for advective terms.

7 Mathematical modeling of vapor transport in air

In Chapter 7, we used the coupled computational approach developed in the previous chapter to
simulate vapor transport in the boundary layer above a partially saturated soil. The chapter concludes
the multidisciplinary work presented in this thesis with mutual collaboration between experimental
and computational methodologies.

The mathematical model was validated with experimental data measured above a flat partially
saturated soil layer featuring synthetic plants arranged in several configurations. The experimental
dataset used in this study was generated by [A168, A169] and is publicly available in [O36]. The
model relies on experimental data for the specification of boundary conditions: the inflow velocity
and humidity profiles and the average mass flux of water loss from the plants. Based on the presented
validation study, we can draw reasonable predictions about the flow and transport behavior inside the
computational domain.

The performance of the coupled solver depends on the selected lattice and mesh sizes (i.e., spatial
resolution) and the adaptively selected time steps. The highest-resolution simulations, which compare
the best to the experimental data, require about 200 GiB memory and 15.25 h computational time on
8 NVIDIA Tesla A100 cards to simulate 100 s of physical time. The simulations in lower resolutions
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are not as accurate, but require less memory and shorter computational time compared to the highest
resolution. A strong scaling analysis was performed for a lower resolution giving a parallel efficiency
of 80% on 8 NVIDIA Tesla A100 cards. Scalability problems that are likely to occur on large-scale
supercomputers were not investigated due to the availability of computational resources.

The presented results suggest several key areas where future experimental efforts could be im-
proved, allowing the analysis of this model’s performance to be extended and further explored. For
example, extending measurements with flow characteristics in the transverse direction (e.g., E~ , RMS~ ,
E
′
GE

′
~ , E

′
~E

′
I) would allow us to compare the turbulent kinetic energy and improve the fluctuating inflow

velocity condition for the simulations. Another possible improvement is to arrange measurements in
horizontal profiles in regions behind the plants, which would allow us to study the convergence of
the numerical method (i.e., the effect of mesh resolution) by comparing the horizontal location of the
vortical structures. Last but not least, the applicability of the measured evaporative mass flux to the
close spacing scenario EX-1 should be investigated. Improving the methodology for measuring the
evaporation from the plants would allow for prescribing more appropriate boundary conditions.

The presented simulator for vapor transport in air is just a first application of the coupled LBM-
MHFEM approach and could be extended into a more general software tool capable of solving other
physical phenomena such as non-isothermal flow, multicomponent flow, land-atmospheric interaction,
etc. There are many potential applications in combination with the experimental research, such as
developing an efficient tool for a sensitivity analysis of measurements, supplementing sparse experi-
mental datasets in regions where measurements would be too expensive or unfeasible, or predicting
the behavior of the studied system in virtual scenarios.
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Appendix A

Default Mesh Configuration

The TNL library provides the following class template as the default mesh configuration:

1 template< typename Cell,
2 int SpaceDimension = Cell::dimension,
3 typename Real = double,
4 typename GlobalIndex = int,
5 typename LocalIndex = GlobalIndex >
6 struct DefaultConfig
7 {
8 using CellTopology = Cell;
9 using RealType = Real;

10 using GlobalIndexType = GlobalIndex;
11 using LocalIndexType = LocalIndex;
12
13 static constexpr int spaceDimension = SpaceDimension;
14 static constexpr int meshDimension = Cell::dimension;
15
16 // Storage of subentity links.
17 static constexpr bool subentityStorage( int entityDimension, int subentityDimension )
18 {
19 return true;
20 }
21
22 // Storage of superentity links.
23 static constexpr bool superentityStorage( int entityDimension, int superentityDimension )
24 {
25 return true;
26 }
27
28 // Storage of boundary tags of mesh entities.
29 static constexpr bool entityTagsStorage( int entityDimension )
30 {
31 return superentityStorage( meshDimension - 1, meshDimension ) &&
32 ( entityDimension >= meshDimension - 1 || subentityStorage( meshDimension - 1, entityDimension ) );
33 }
34
35 // Storage of the dual graph.
36 static constexpr bool dualGraphStorage()
37 {
38 return true;
39 }
40
41 // Parameter n_{common} for the generation of the dual graph.
42 static constexpr int dualGraphMinCommonVertices = meshDimension;
43 };
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Appendix B

Mesh Entity Topologies

In non-polyhedral meshes, cells are specified by their subvertices and every other subentity is deter-
mined implicitly by the cell topology and its subvertices. Hence, the subvertices of a cell must follow
a specific order which is shown in Figure B1 for the entity topologies currently implemented in TNL
(except polyhedron). The ordering of the subvertices is inspired by VTK [B27] and extended with a
specific numbering of other subentities which can be utilized by numerical schemes. For example, the
faces of a simplex are numbered such that each face has the same local index as the opposite vertex.
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Figure B1: Mesh entity topologies in the TNL library and the ordering of subvertices and faces.
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Appendix C

Mesh Storage Layers

The inheritance diagram for the Mesh class template is shown in Figure C1. The template parameters
Config, which represents the mesh configuration (see Subsection “Static configuration” on Page 33),
and Device, which represents the device in which memory space the mesh will be allocated (see
Section 1.3.2), are propagated to all base class templates in the hierarchy. The first base class template is
StorageLayerFamily which does not have any data members and its purpose is to provide access via tag
dispatching to all individual storage layers. The recursive inheritance is realized in the StorageLayer class
template which is parametrized by the entity dimension tag, DimTag<d>, and comprises all data related
to 3-dimensional mesh entities. The StorageLayerFamily class template starts the inheritance with the
dimension 0 and each storage layer inherits from the same class template, but with an incremented
dimension tag. Finally, recursion is terminated by the empty (� +1)-dimensional partial class template
specialization.

The inheritance diagram for the general 3-dimensional StorageLayer class template is shown in
Figure C2 (the inheritance between the instances of StorageLayer with the parameters DimTag<d> and
DimTag<d+1> has been explained in Figure C1). The inheritance scheme is similar to Figure C1, now using
two separate storage layer families for the data related to subentities and superentities of3-dimensional
entities. We introduce the SubentityStorageLayer and SuperentityStorageLayer class templates which
are parametrized by the entity dimensions 3 and 3 ′ and store one specific incidence matrix each:
SubentityStorageLayer stores �3,3 ′ , where 3 > 3

′, and SuperentityStorageLayer stores �3,3 ′ , where 3 < 3
′.

By default, both SubentityStorageLayer and SuperentityStorageLayer also store the array containing the

Mesh< Config, Device >

StorageLayerFamily< Config, Device >

StorageLayer< Config, Device, DimTag< 0 > >

StorageLayer< Config, Device, DimTag< 1 > >

.

.

.

StorageLayer< Config, Device, DimTag< D > >

StorageLayer< Config, Device, DimTag< D+1 > >

Figure C1: Inheritance scheme of the �-dimensional Mesh class template. The (� + 1)-dimensional
partial specialization of the StorageLayer class template is an empty class template used to terminate
the recursive inheritance.
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StorageLayer< Config, Device, DimTag< d > >

StorageLayer< Config, Device, DimTag< d+1 > >

SubentityStorageLayerFamily< Config, Device, DimTag< d > >

SubentityStorageLayer< Config, Device, DimTag< d >, DimTag< 0 > >

SubentityStorageLayer< Config, Device, DimTag< d >, DimTag< 1 > >

.

.

.

SubentityStorageLayer< Config, Device, DimTag< d >, DimTag< d-1 > >

SubentityStorageLayer< Config, Device, DimTag< d >, DimTag< d > >

SuperentityStorageLayerFamily< Config, Device, DimTag< d > >

SuperentityStorageLayer< Config, Device, DimTag< d >, DimTag< D > >

SuperentityStorageLayer< Config, Device, DimTag< d >, DimTag< D-1 > >

.

.

.

SuperentityStorageLayer< Config, Device, DimTag< d >, DimTag< d+1 > >

SuperentityStorageLayer< Config, Device, DimTag< d >, DimTag< d > >

Figure C2: Inheritance scheme of the 3-dimensional specialization of the StorageLayer class template
for a �-dimensional mesh. The 3-dimensional partial specializations of the SubentityStorageLayer

and SuperentityStorageLayer class templates are empty class templates used to terminate the recursive
inheritance.

numbers of non-zero elements per row (see Subsection “Internal data structures” on Page 33). The
SubentityStorageLayer template has a partial class template specialization for static entity topologies,
which omits the array with numbers of non-zero elements per row and uses a compile-time constant
instead. Note that the inheritance for SubentityStorageLayer is started by 3

′
= 0 and continues

by incrementing 3 ′, but for the SuperentityStorageLayer it is started by 3 ′ = � and continues by
decrementing 3 ′. In both cases, the recursive inheritance which is terminated by an empty partial
class template specialization when the entity dimension is the same as the subentity or superentity
dimension (i.e., 3 = 3

′).
In the following code examples, we outline the implementation of the scheme from Figure C1 using

recursive inheritance and partial class template specialization. The recursive inheritance can be written
in a simplified form as follows:

1 template< typename Config, typename Device, typename DimTag >
2 class StorageLayer
3 : public StorageLayer< Config, Device, typename DimTag::Increment >
4 {
5 // implementation of member functions is omitted
6 };
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It is assumed that the DimTag parameter is initially supplied a 0-dimensional tag which is incremented
by one to inherit the next storage layer. Note that due to a C++ language limitation, we have to use the
DimTag type template parameter instead of a non-type template parameter such as int d to represent the
dimension, because expressions involving other type template parameters cannot be used to partially
specialize a non-type template parameter. After all storage layers for the givenmesh have been used, an
empty partial class template specialization is supplied in order to terminate the recursive inheritance.
The empty specialization is identified by Config::meshDimension + 1, where Config::meshDimension stands
for the mesh dimension � :

1 template< typename Config, typename Device >
2 class StorageLayer< Config, Device, DimTag< Config::meshDimension + 1 > >
3 {};

In practice, the complete inheritance is more complicated than the scheme illustrated in Figures C1
and C2, since the Mesh class template has additional base classes which are omitted here for clarity.
Individual storage layers also store more data in addition to the incidence matrices. For example, there
are arrays storing tags (such as BoundaryEntity, GhostEntity or arbitrary user attributes) for each mesh
entity. On the other hand, some data members which do not have to be parametrized by the entity
dimension (e.g. the array of vertex coordinates) are placed directly in the Mesh class template. Finally,
note that all data members in the hierarchy of storage layers are always present, even if they are unused
according to the configuration. Disabling storage in the configuration skips only dynamic allocation
and static_assert declarations guard access to the disabled data members.
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Appendix D

Raviart–Thomas–Nédélec Basis Functions

The definition of the Raviart–Thomas–Nédélec space RTN0( ) of the lowest order on the mesh element
 ∈ Kℎ depends on the shape of the element. This chapter provides explicit definitions of the basis
functions on common elements that satisfy the properties given by Equation (4.5). See [B6] for details.

D.1 Basis functions for simplex elements in R�

The simplex  ∈ Kℎ in R� is the convex hull of � + 1 affinely independent points \0, . . . , \� ∈ R� . We
assume that the faces �0, . . . , �� ∈ E of the simplex are numbered such that for all ℓ ∈ {0, . . . , �}, \ℓ
is the opposite vertex of the face �ℓ . Then the basis functions of the space RTN0( ) are

8 ,�ℓ (x) =
1

� | |�
(x − \ℓ ) , (D.1)

for all ℓ ∈ {0, . . . , �} and x ∈  .

D.2 Basis functions for rectangles in R2

For the reference rectangular element  = (0, ℎG ) × (0, ℎ~) in R2 we choose the basis functions of the
space RTN0( ) of the form

8 ,�1 (x) =
1

| |2

(
G − ℎG

0

)
, 8 ,�2 (x) =

1
| |2

(
G

0

)
,

8 ,�3 (x) =
1

| |2

(
0

~ − ℎ~

)
, 8 ,�4 (x) =

1
| |2

(
0
~

)
,

(D.2)

where G,~ denote the components of the vector x ∈  ⊂ R2 and the symbols �1, �2, �3, �4 denote the
left, right, bottom, and top edge of the element  , respectively.
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D.3. Basis functions for cuboids in R3

D.3 Basis functions for cuboids in R3

For the reference cuboidal element  = (0, ℎG ) × (0, ℎ~) × (0, ℎI) in R3 we choose the basis functions
of the space RTN0( ) of the form

8 ,�1 (x) =
1

| |3
©­«
G − ℎG

0
0

ª®¬ , 8 ,�2 (x) =
1

| |3
©­«
G

0
0

ª®¬ ,
8 ,�3 (x) =

1
| |3

©­«
0

~ − ℎ~
0

ª®¬ , 8 ,�4 (x) =
1

| |3
©­«
0
~

0

ª®¬ ,
8 ,�5 (x) =

1
| |3

©­«
0
0

I − ℎI

ª®¬ , 8 ,�6 (x) =
1

| |3
©­«
0
0
I

ª®¬ ,
(D.3)

where G,~, I denote the components of the vector x ∈  ⊂ R3 and �ℓ are the faces of the element  
numbered as follows:

• �1 and �2 are faces orthogonal to the G-axis, the point x = 0 lies on the face �1,

• �3 and �4 are faces orthogonal to the ~-axis, the point x = 0 lies on the face �3,

• �5 and �6 are faces orthogonal to the I-axis, the point x = 0 lies on the face �5.
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Appendix E

Mass Matrices in MHFEM

This chapter completes the numerical scheme described in Section 4.2 with explicit calculations of the
local mass matrices b8, 9, = [18, 9, ,�,� ]�,� ∈E defined for all 8, 9 ∈ {1, . . . , =} and  ∈ Kℎ in Section 4.2.4.
For simplicity, we assume that the tensor D8, 9 = �8, 9 I describes an isotropic medium and �8, 9, denotes
the mean value of �8, 9 on the element  .

E.1 Mass matrix b8, 9, for edges

Let us consider the reference element  = (0, ℎG ) ⊂ R1 and let the symbols �1 and �2 denote the left
and right edge of the element  , respectively. Direct calculation of the defining integrals �8, 9, ,�,� =

�
−1
8, 9, 

∫
 
8) ,�8 ,� for �, � ∈ E leads to

B8, 9, =
ℎG

6
�

−1
8, 9, 

(
2 −1

−1 2

)
. (E.1)

The inverse matrix b8, 9, = B−1
8, 9, is then

b8, 9, =
2
ℎG
�8, 9, 

(
2 1
1 2

)
. (E.2)

In practice, however, this choice of the coefficients 18, 9, ,�,� may lead to spurious oscillations in
simulations involving heterogeneous media, see [A72, B20, C37]. According to [A186], the problem is
that the matrix of the final MHFEM system Equation (4.44) for rectangular and cuboidal elements is
not an M-matrix. The solution is to use the mass-lumping technique where the matrix entries �8, 9, ,�,�
are calculated only approximately using numerical integration∫

 

b (x)dx ≈ | |
#V 

#V ∑
]=1

b (x]), (E.3)

where b is the integrated scalar function and the integration points x] are placed in the vertices of the
element  with #V being the number of the vertices. The resulting matrix B(ℓ )

8, 9, 
is diagonal and has

the form

B8, 9, ≈ B(ℓ )
8, 9, 

=
ℎG

2
�

−1
8, 9, 

(
1 0
0 1

)
. (E.4)

The matrix b8, 9, = B−1
8, 9, is then approximated by the inverse of B(ℓ )

8, 9, 
, i.e.

b8, 9, ≈ 2
ℎG
�8, 9, 

(
1 0
0 1

)
. (E.5)

142



E.2. Mass matrix b8, 9, for rectangles

E.2 Mass matrix b8, 9, for rectangles

Let us consider the reference element  = (0, ℎG ) × (0, ℎ~) ⊂ R2 and consistently with Appendix D
let the symbols �1, �2, �3, �4 denote the left, right, bottom, and top edge of the element  , respectively.
Similarly to the previous section, direct calculation of the defining integrals leads to the matrix B8, 9, 
in the form

B8, 9, =
1
6
�

−1
8, 9, 

©­­­­­­«

2ℎG
ℎ~

−ℎG
ℎ~

0 0

−ℎG
ℎ~

2ℎG
ℎ~

0 0

0 0 2
ℎ~

ℎG
−ℎ~
ℎG

0 0 −ℎ~
ℎG

2
ℎ~

ℎG

ª®®®®®®¬
. (E.6)

The inverse matrix b8, 9, = B−1
8, 9, is then

b8, 9, = 2�8, 9, 

©­­­­­­«
2
ℎ~

ℎG

ℎ~

ℎG
0 0

ℎ~

ℎG
2
ℎ~

ℎG
0 0

0 0 2ℎG
ℎ~

ℎG
ℎ~

0 0 ℎG
ℎ~

2ℎG
ℎ~

ª®®®®®®¬
. (E.7)

Same as in R1, this choice of the coefficients 18, 9, ,�,� for rectangular elements in R2 may cause
spurious oscillations. Thus, we again use themass-lumping technique and use the numerical integration
from Equation (E.3) to calculate the matrix entries �8, 9, ,�,� . The resulting matrix is

B8, 9, ≈ B(ℓ )
8, 9, 

=
1
2
�

−1
8, 9, 

©­­­­­­«

ℎG
ℎ~

0 0 0

0 ℎG
ℎ~

0 0

0 0
ℎ~

ℎG
0

0 0 0
ℎ~

ℎG

ª®®®®®®¬
. (E.8)

The matrix b8, 9, = B−1
8, 9, is then approximated by the inverse of B(ℓ )

8, 9, 
, i.e.

b8, 9, ≈ 2�8, 9, 

©­­­­­­«

ℎ~

ℎG
0 0 0

0
ℎ~

ℎG
0 0

0 0 ℎG
ℎ~

0

0 0 0 ℎG
ℎ~

ª®®®®®®¬
. (E.9)
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E.3. Mass matrix b8, 9, for cuboids

E.3 Mass matrix b8, 9, for cuboids

Let us consider the reference element  = (0, ℎG ) × (0, ℎ~) × (0, ℎI) ⊂ R3 and let the faces �] ∈ E be
numbered same as in Appendix D.3. Similarly to the previous sections, direct calculation of the defining
integrals leads to the matrix B8, 9, in the form

B8, 9, =
1
6
�

−1
8, 9, 

©­­­­­­­­­­­­«

2 ℎG
ℎ~ℎI

− ℎG
ℎ~ℎI

0 0 0 0

− ℎG
ℎ~ℎI

2 ℎG
ℎ~ℎI

0 0 0 0

0 0 2
ℎ~

ℎGℎI
− ℎ~

ℎGℎI
0 0

0 0 − ℎ~

ℎGℎI
2
ℎ~

ℎGℎI
0 0

0 0 0 0 2 ℎI
ℎGℎ~

− ℎI
ℎGℎ~

0 0 0 0 − ℎI
ℎGℎ~

2 ℎI
ℎGℎ~

ª®®®®®®®®®®®®¬
. (E.10)

The inverse matrix b8, 9, = B−1
8, 9, is then

b8, 9, = 2�8, 9, 

©­­­­­­­­­­­­«

2
ℎ~ℎI

ℎG

ℎ~ℎI

ℎG
0 0 0 0

ℎ~ℎI

ℎG
2
ℎ~ℎI

ℎG
0 0 0 0

0 0 2ℎGℎI
ℎ~

ℎGℎI
ℎ~

0 0

0 0 ℎGℎI
ℎ~

2ℎGℎI
ℎ~

0 0

0 0 0 0 2
ℎGℎ~

ℎI

ℎGℎ~

ℎI

0 0 0 0
ℎGℎ~

ℎI
2
ℎGℎ~

ℎI

ª®®®®®®®®®®®®¬
. (E.11)

Same as inR1, this choice of the coefficients18, 9, ,�,� for cuboidal elements inR3 may cause spurious
oscillations. Thus, we again use the mass-lumping technique and use the numerical integration from
Equation (E.3) to calculate the matrix entries �8, 9, ,�,� . The resulting matrix is

B8, 9, ≈ B(ℓ )
8, 9, 

=
1
2
�

−1
8, 9, 

©­­­­­­­­­­­­«

ℎG
ℎ~ℎI

0 0 0 0 0

0 ℎG
ℎ~ℎI

0 0 0 0

0 0
ℎ~

ℎGℎI
0 0 0

0 0 0
ℎ~

ℎGℎI
0 0

0 0 0 0 ℎI
ℎ~ℎI

0

0 0 0 0 0 ℎI
ℎ~ℎI

ª®®®®®®®®®®®®¬
. (E.12)

The matrix b8, 9, = B−1
8, 9, is then approximated by the inverse of B(ℓ )

8, 9, 
, i.e.

b8, 9, ≈ 2�8, 9, 

©­­­­­­­­­­­­«

ℎ~ℎI

ℎG
0 0 0 0 0

0
ℎ~ℎI

ℎG
0 0 0 0

0 0 ℎGℎI
ℎ~

0 0 0

0 0 0 ℎGℎI
ℎ~

0 0

0 0 0 0
ℎGℎ~
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0
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ℎI

ª®®®®®®®®®®®®¬
. (E.13)
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E.4. Mass matrix b8, 9, for triangles

E.4 Mass matrix b8, 9, for triangles

Let us consider the triangle  = [\0, \1, \2]^ ⊂ R2 with edges �] ∈ E numbered same as in
Appendix D.1. To calculate the integrals �8, 9, ,�4 ,�5 = �

−1
8, 9, 

∫
 
8) ,�48 ,�5 for 4, 5 ∈ {0, 1, 2}, we use

the barycentric coordinates [0, [1 ∈ [0, 1], [0 + [1 ≤ 1. Denoting V4 = \4 − \2 for 4 ∈ {0, 1, 2}, each
point x ∈  can be expressed as

x = \2 + [0V0 + [1V1. (E.14)

The absolute value of the Jacobian determinant for this transformation is

|J | =
�����det

(
%
(1)
0 %

(1)
1

%
(2)
0 %

(2)
1

)����� = ��% (1)
0 %

(2)
1 − % (2)

0 %
(1)
1

��
=

��(+ (1)
0 −+ (1)

2 ) (+ (2)
1 −+ (2)

2 ) − (+ (2)
0 −+ (2)

2 ) (+ (1)
1 −+ (1)

2 )
�� = 2| |2. (E.15)

Using this transformation to calculate the integral leads to∫
 

8) ,�48 ,�5 dx =
1

4| |22

∫
 

(x − \4)) (x − \5 )dx

=
1

2| |2

1∫
0

d[1

1−[1∫
0

d[0([0V0 + [1V1 − V4)) ([0V0 + [1V1 − V5 )

=
1

2| |2

1∫
0

d[1

1−[1∫
0

d[0
(
[
2
0V
)
0 V0 + [21V)1 V1 + V)4 V5

+ 2[0[1V
)
0 V1 − [0V)0 (V4 + V5 ) − [1V)1 (V4 + V5 )

)
=

1
24| |2

(
V)0 V0 + V)1 V1 + V)0 V1 − 2(V0 + V1)) (V4 + V5 ) + 6V4V5

)
. (E.16)

In general, all entries in the matrix B8, 9, are non-zero. The inverse matrix b8, 9, is computed using
the LU factorization.

145



E.5. Mass matrix b8, 9, for tetrahedra

E.5 Mass matrix b8, 9, for tetrahedra

Let us consider the tetrahedron  = [\0, \1, \2, \3]^ ⊂ R3 and its faces �] ∈ E numbered same as in
Appendix D.1. To calculate the integrals �8, 9, ,�4 ,�5 = �

−1
8, 9, 

∫
 
8) ,�48 ,�5 for 4, 5 ∈ {0, . . . , 3}, we use

the barycentric coordinates [0, [1, [2 ∈ [0, 1], [0 + [1 + [2 ≤ 1. Denoting V4 = \4 − \3 for 4 ∈ {0, . . . , 3},
each point x ∈  can be expressed as

x = \3 + [0V0 + [1V1 + [2V2. (E.17)

The absolute value of the Jacobian determinant for this transformation is

|J | =

�������det ©­­«
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������� = ��V0 · (V1 × V2)

�� = 6| |3. (E.18)

Using this transformation to calculate the integral leads to∫
 

8) ,�48 ,�5 dx =
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9| |23
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=
2

3| |3

1∫
0

d[2

1−[2∫
0

d[1

1−[1−[2∫
0

d[0

(
2∑
:=0

[:V: − V4

)) (
2∑
ℓ=0

[ℓVℓ − V5

)

=
2

3| |3

1∫
0

d[2

1−[2∫
0

d[1

1−[1−[2∫
0

d[0

(
2∑
:=0

(
[
2
:V

)
: V: − [:V

)
: (V4 + V5 )

)
+

2∑
:,ℓ=0
:≠ℓ

[:[ℓV
)
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180| |3

(
2V)0 V0 + 2V)1 V1 + 2V)2 V2 + 2V)0 V1 + 2V)0 V2 + 2V)1 V2

− 5(V0 + V1 + V2)) (V4 + V5 ) + 20V4V5
)
. (E.19)

In general, all entries in the matrix B8, 9, are non-zero. The inverse matrix b8, 9, is computed using
the LU factorization.
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Appendix F

Velocity Sets for LBM

A Python script solving the system of equations that the given velocity set must satisfy. The reference
mentioned in the code is [B21, Section 3.4.7.2].

[online version]

1 #! /usr/bin/env python3
2 # Reference: [1] Timm Krüger - The Lattice Boltzmann Method, Section 3.4.7.2, Eq. (3.60)
3 import itertools
4 from sympy import *
5 init_printing()
6
7 # input parameters
8 D = 3 # space dimension
9 Q = 27 # number of discrete velocities

10 #cs = 1/Rational(2) # speed of sound (D3Q7)
11 cs = 1/sqrt(3) # speed of sound (D1Q3, D2Q5, D2Q9, D3Q7*, D3Q15, D3Q19, D3Q27)
12
13 # all discrete velocity vectors
14 c_1_3 = Matrix([[0, 1, -1]])
15 c_2_9 = Matrix([
16 [0, 1, 0, -1, 0, 1, 1,-1,-1],
17 [0, 0, 1, 0, -1, 1,-1, 1,-1],
18 ])
19 c_3_27 = Matrix([
20 [0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 1,-1,-1, 1, 1,-1,-1, 1, 1, 1, 1,-1,-1,-1,-1],
21 [0, 0, 1, 0, 0, -1, 0, 1, 1,-1,-1, 1,-1, 1,-1, 0, 0, 0, 0, 1, 1,-1,-1, 1, 1,-1,-1],
22 [0, 0, 0, 1, 0, 0, -1, 1,-1, 1,-1, 0, 0, 0, 0, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1],
23 ])
24
25 # select the discrete velocity vectors for D and Q
26 if D == 1:
27 c = c_1_3
28 elif D == 2:
29 c = c_2_9.extract(range(D), range(Q))
30 elif D == 3 and Q == 15:
31 c = c_3_27.extract(range(D), [i for i in range(27) if i < 7 or 19 <= i])
32 elif D == 3:
33 c = c_3_27.extract(range(D), range(Q))
34 else:
35 raise NotImplementedError
36 assert sum(c) == 0
37 print(f"Matrix of discrete velocity vectors for D{D}Q{Q}")
38 pprint(c)
39
40 def sym_vector(dim, name):
41 syms = []
42 for i in range(dim):
43 syms.append(symbols(f"{name}_{i}"))
44 return Matrix(syms)
45
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46 def delta(a, b):
47 return 1 if a == b else 0
48
49 # solve weights according to [1]
50 w = sym_vector(Q, "w")
51 eqs = []
52 # eq 1
53 eqs.append(Eq(sum(w), 1))
54 # eq 2
55 for d1 in range(D):
56 eqs.append(Eq(w.dot(c.row(d1)), 0))
57 # eq 3
58 for d1, d2 in itertools.product(range(D), repeat=2):
59 rhs = cs ** 2 if d1 == d2 else 0
60 s = Add(0)
61 for i in range(Q):
62 s += w[i] * c[d1, i] * c[d2, i]
63 # avoid adding identical equation "0=0" (it would add a boolean constant instead of an expression)
64 if s != 0:
65 eqs.append(Eq(s, rhs))
66 # eq 4
67 for d1, d2, d3 in itertools.product(range(D), repeat=3):
68 s = Add(0)
69 for i in range(Q):
70 s += w[i] * c[d1, i] * c[d2, i] * c[d3, i]
71 # avoid adding identical equation "0=0" (it would add a boolean constant instead of an expression)
72 if s != 0:
73 eqs.append(Eq(s, 0))
74 # avoid overdetermined system
75 if not (D == 3 and Q == 7 and cs == 1/Rational(2)):
76 # eq 5
77 for d1, d2, d3, d4 in itertools.product(range(D), repeat=4):
78 rhs = cs ** 4 * (delta(d1,d2) * delta(d3,d4) + delta(d1,d3) * delta(d2,d4) \
79 + delta(d1,d4) * delta(d2,d3))
80 s = Add(0)
81 for i in range(Q):
82 s += w[i] * c[d1, i] * c[d2, i] * c[d3, i] * c[d4, i]
83 # avoid adding identical equation "0=0" (it would add a boolean constant instead of an expression)
84 if s != 0:
85 eqs.append(Eq(s, rhs))
86 # eq 6
87 for d1, d2, d3, d4, d5 in itertools.product(range(D), repeat=5):
88 s = Add(0)
89 for i in range(Q):
90 s += w[i] * c[d1, i] * c[d2, i] * c[d3, i] * c[d4, i] * c[d5, i]
91 # avoid adding identical equation "0=0" (it would add a boolean constant instead of an expression)
92 if s != 0:
93 eqs.append(Eq(s, 0))
94
95 print("Total number of equations:", len(eqs))
96 for i, eq in enumerate(eqs):
97 pprint(f"{i}-th equation: {eq}")
98
99 solution = linsolve(eqs, [wi for wi in w])

100 if not solution:
101 raise Exception("linsolve did not return a solution")
102 solution = Matrix(list(solution)[0])
103
104 print("solution:")
105 pprint(Eq(w, solution))
106
107 # D3Q27 is underdetermined (see [1])
108 if D == 3 and Q == 27:
109 w26 = 1/Rational(216)
110 print(f"assuming {w[-1]}={w26}:")
111 pprint(Eq(w, solution.subs({w[-1]: w26})))
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Appendix G

Synthetic Turbulence Generator

The procedure for generating isotropic synthetic turbulence is based on [O6, C18, A54, A55]. It can be
used to generate velocity fluctuations for an initial condition v (x, 0) for x ∈ Ω, as well as for an inflow
boundary condition vin(x, C) for x ∈ Γin ⊂ mΩ, C ≥ 0. The velocity field v (x, C) is first decomposed as

v (x, C) = v (x) + v′(x, C), (G.1)

where v (x) is the mean (time-averaged) field and v′(x, C) is the velocity fluctuation. The mean field v
can be set as desired for the initial or boundary condition and the fluctuation v′ must be generated. The
algorithm described below is implemented in the C++ language with CUDA acceleration and available
as part of the Template Numerical Library that was introduced in Section 1.3.

G.1 Computing the fluctuations

Turbulent fluctuations consist of a wide range of scales and their analysis is based on using Fourier
series. A general form of a fluctuating velocity field v′ at a fixed time level with zero average (v′ = 0)
can be expressed as [O6, Eq. (27.3)]

v′(x) = 2
#modes∑
==1

Ê
= cos(+= · x +k=)2=, (G.2)

where Ê= andk= are the amplitude and phase of the =-th mode, 2= is a unit vector that determines the
direction of the =-th mode, and += is the wave-number vector of the =-th mode. Note that only the first
#modes terms of the full series are considered in the generator.

The wave-number vector += is written as

^
=
G = d

= sin(\=) cos(q=), (G.3)
^
=
~ = d

= sin(\=) sin(q=), (G.4)

^
=
I = d

= cos(\=), (G.5)

where \= and q= are randomly selected angles and d= is the magnitude of the =-th wave number. In
order to have ∇ · v′ = 0, the direction vector 2= must be orthogonal to the wave-number vector +=

[O6]. Hence, 2= can be written as

f
=
G = cos(q=) cos(\=) cos(U=) − sin(q=) sin(U=), (G.6)
f
=
~ = sin(q=) cos(\=) cos(U=) + cos(q=) sin(U=), (G.7)

f
=
I = − sin(\=) cos(U=), (G.8)
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G.2. Introducing time correlation

where U= is a randomly selected angle that gives the direction of 2= in the plane orthogonal to += . The
phasek= in Equation (G.2) is selected randomly as well.

The magnitudes d= of the discrete wave numbers in Equation (G.3) are selected by sampling an
interval [^min, ^max] with #modes points, i.e.

d
=
= ^min +

(
= − 1

2

)
Δ^ (G.9)

for= ∈ {1, . . . , #modes}, where Δ^ = (^max−^min)/#modes. The highest wave number^max = 2c/XG is set
based on the grid spacing XG and the smallest wave number is set as ^min = ^4/? , where the factor ? = 5
is chosen as suggested in [O6] and ^4 is specified below in Equation (G.10d) based on the turbulence
model.

The modified von Kármán spectrum [O6, A54] is used to model the turbulent energy spectrum. The
amplitude Ê= of the =-th mode in Equation (G.2) is obtained from

Ê
=
= ERMS

√
� (d=)Δ:, (G.10a)

� (^) = 2�

^4

(
^
^4

)4
[
1 +

(
^
^4

)2]17/6 exp ©­«−2
(
^

^[

)2ª®¬ , (G.10b)

2� =
4
√
c

Γ
( 17
6

)
Γ

( 1
3

) ≈ 1.452762113, (G.10c)

^4 =
9c2�
55Lint

, ^[ =

(
n

a
3

)1/4
, (G.10d)

where ERMS =

√
2
3: [ms−1] is the turbulent velocity scale (root mean square), : [m2 s−2] is the turbulent

kinetic energy, Lint [m] is the turbulent integral length scale, n = :
3/2

Lint
[m2 s−3] is the dissipation rate of

the turbulent kinetic energy, and a [m2 s−1] is the kinematic viscosity of the fluid.
The input parameters of the turbulence generator are the quantities #modes, : , andLint. For channel

flow applications, Lint may be estimated as a fraction (e.g., 1/10 to 1/2) of the expected boundary layer
height [O6].

G.2 Introducing time correlation

To generate velocity fluctuations at multiple discrete time levels C= = =XC , where= is an integer denoting
the time level and XC is the time step used in a numerical simulation, additional computations are needed.
Firstly, independent realizations of random fluctuations v̂′ are generated for each time level using the
procedure described above. Then, time correlation between the realizations is introduced using an
asymmetric time filter

(v′)= = 0(v′)=−1 + 1 (v̂′)=, (G.11)

where v′ denotes the time-correlated field, v̂′ denotes the time-independent field, superscripts denote
the time levels and the coefficients are chosen as 0 = exp(−ΔC/Tint) and 1 =

√
1 − 02, where Tint =

Lint/+1 is set using the Taylor’s hypothesis based on the desired bulk velocity +1 ≈ |v |. The time filter
ensures that Tint corresponds to the turbulent integral time scale and that the variance of the generated
fluctuations is preserved [O6].
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G.3 Example

Figure G1 shows an example of the synthetic fluctuating velocity field E ′G [ms−1] computed on a unit
square discretized by 500 × 500 points. The parameters used in the generator are: grid spacing XG =

1/499m, integral length scale Lint = 0.01m, number of discrete modes #modes = 3000, turbulent kinetic
energy : = 10−2m2 s−2, and kinematic viscosity a = 1.5 × 10−5m2 s−1.

Figure G1: First component of synthetic fluctuating velocity field (E ′G [ms−1]) generated on a unit square
discretized by 500 × 500 points.
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