Arch manual pages

CATANH(3) Linux Programmer's Manual CATANH(3)

catanh, catanhf, catanhl - complex arc tangents hyperbolic

#include <complex.h>

double complex catanh(double complex z);
float complex catanhf(float complex z);
long double complex catanhl(long double complex z);

Link with -lm.

These functions calculate the complex arc hyperbolic tangent of z. If y = catanh(z), then z = ctanh(y). The imaginary part of y is chosen in the interval [-pi/2,pi/2].

One has:

    catanh(z) = 0.5 * (clog(1 + z) - clog(1 - z))

These functions first appeared in glibc in version 2.1.

For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value
catanh (), catanhf (), catanhl () Thread safety MT-Safe

C99, POSIX.1-2001, POSIX.1-2008.

/* Link with "-lm" */
#include <complex.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
int
main(int argc, char *argv[])
{
    double complex z, c, f;
    if (argc != 3) {
        fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]);
        exit(EXIT_FAILURE);
    }
    z = atof(argv[1]) + atof(argv[2]) * I;
    c = catanh(z);
    printf("catanh() = %6.3f %6.3f*i\n", creal(c), cimag(c));
    f = 0.5 * (clog(1 + z) - clog(1 - z));
    printf("formula  = %6.3f %6.3f*i\n", creal(f2), cimag(f2));
    exit(EXIT_SUCCESS);
}

atanh(3), cabs(3), cimag(3), ctanh(3), complex(7)

This page is part of release 5.02 of the Linux man-pages project. A description of the project, information about reporting bugs, and the latest version of this page, can be found at https://www.kernel.org/doc/man-pages/.
2019-03-06