Development and optimization of a coupled multi-GPU LBM-MHFEM solver for vapor transport in air

Jakub Klinkovský^a, Radek Fučík^a, Andrew C. Trautz^b, Tissa H. Illangasekare^c

^a Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague ^bResearch Givil Engineer – Geotechnical Engineering and Geosciences Branch, US Army Engineer Research and Development Center ^cCenter for Experimental Study of Subsurface Environmental Processes (CESEP). Department of Givil and Architectural Engineering, Colorado School of Mines

> HPCSE 2022 May 18, 2022

Ack

1 Motivation

- ② Governing equations
- **3** Coupling LBM and MHFEM
- 4 Validation results: vapor transport in air
- **5** Parallel implementation for GPU clusters

Wind tunnel experiments

Joint work by Andrew C. Trautz^b and Tissa Illangasekare^c

^bUS Army Engineer Research and Development Center

 c Center for Experimental Study of Subsurface Environmental Processes, Colorado School of Mines

Experiments related to this talk:

- Climate-controlled, low-speed wind tunnel interfaced with a soil tank (CESEP, Colorado School of Mines, USA)
- Designed to study processes with mass flux across the land-atmospheric interface (e.g. water evaporation)
- Live vegetation approximated with limestone blocks

Validation results

Implementation

Wind tunnel experiments

Computational domain

Only part of the wind tunnel above soil surface; 2 identical blocks; different spacings.

Governing equations: air flow and vapor transport

NSE (air flow in $\Omega_1 imes (0, t_{\max})$):

Model

$$\nabla \cdot \vec{v} = 0, \qquad (1a)$$

$$rac{\partial ec{v}}{\partial t} + ec{v} \cdot
abla ec{v} = -rac{1}{
ho}
abla p +
u \Delta ec{v}, \qquad ext{(1b)}$$

ADE (vapor transport in $\Omega_2 \subset \Omega_1$):

$$\frac{\partial \phi}{\partial t} + \nabla \cdot (\phi \vec{v} - D\nabla \phi) = 0, \qquad (2a)$$

Or in non-conservative form:

$$\frac{\partial \phi}{\partial t} + \vec{v} \cdot \nabla \phi - \nabla \cdot (D\nabla \phi) = 0.$$
 (2b)

\vec{v} fluid velocity,

- ho fluid density,
- p fluid pressure,
- ν ~ kinematic viscosity of the fluid,

- \vec{v} fluid velocity,
- ϕ ~ relative humidity,
- D diffusion coefficient.

Coupled LBM-MHFEM approach

- Equation (1) lattice Boltzmann method (LBM)
 - D3Q27, Cumulant collision operator (M. Geier et al., 2015)
 - in-house code implementation (R. Straka, R. Fučík, P. Eichler, J. Klinkovský et al.)
 - implementation details later in this talk
- Equation (2) mixed-hybrid finite element method (MHFEM)
 - NumDwarf: numerical scheme for a system of PDEs in a general-coefficient form
 - details in R. Fučík, J. Klinkovský, J. Solovský, T. Oberhuber, J. Mikyška, Computer Physics Communications 238 (2019)
- One-way coupling via the velocity field \vec{v}
 - Interpolation from the equidistant lattice to the MHFEM mesh

Motivation

LBM-MHFEM: coupling details

Interpolation of the velocity \vec{v} :

Model

- Trilinear or tricubic interpolation
- Evaluation at cell side centers (not cell centers) to satisfy balancing requirements imposed by the MHFEM discretization

Transport equation:

- $abla \cdot ec v = 0$ is not satisfied exactly by the LBM solver (weak compressibility)
- The interpolated velocity field is not locally conservative
- Numerical schemes for the conservative and non-conservative variants are not equivalent
- Solving the non-conservative rather than conservative transport equation gives more stable results

Time stepping:

- MHFEM allows to use larger time steps than LBM
- Adaptive time-stepping strategy for MHFEM based on a CFL-like condition

Ack

Time-stepping algorithm

1 Set
$$t_L := 0$$
, $t_M := 0$, Δt and $t_{\max} = N_t \Delta t$

- **2** While $t_L < N_t \Delta t$, repeat these steps:
 - 1 Perform steps for one iteration of LBM (details later)
 - **2** Set $t_L := t_L + \Delta t$
 - **3** If $t_M < t_L$, perform these steps:
 - 1 Interpolate velocity from the lattice to the mesh.
 - 2 Compute $C = \max_{E} \{ |\vec{v}_{E}| \Delta t / |E| \}$, where $E \in \mathcal{E}_{h}$ goes over all faces of the unstructured mesh
 - 3 Set the time step for MHFEM: $\Delta t_M := \Delta t \lfloor C_{\max}/C \rfloor$ if $C \leq C_{\max}$, else $\Delta t_M := \Delta t / \lceil C/C_{\max} \rceil$
 - 4 Set the number of MHFEM iterations: $n_M := 1$ if $C \leq C_{\max}$, else $n_M := \lceil C/C_{\max} \rceil$
 - **5** Perform n_M iterations of MHFEM with the time step Δt_M
 - **6** Set $t_M := t_M + n_M \Delta t_M$

Simulations – velocity and relative humidity profiles

Qualitative comparison with experiment (EX-1: 15 cm)

Qualitative comparison with experiment (EX-2: 45 cm)

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

Qualitative comparison with experiment (EX-3: 105 cm)

Motivation

Ack

Quantitative comparison with experiment (EX-1: 15 cm)

Horizontal and vertical velocity components:

Model

Quantitative comparison with experiment (EX-1: 15 cm)

Relative humidity:

Motivation

Implementation

Quantitative comparison with experiment (EX-2: 45 cm)

Horizontal and vertical velocity components:

Model

Ack

Quantitative comparison with experiment (EX-2: 45 cm)

Relative humidity:

Motivation

Implementation

Ack

Quantitative comparison with experiment (EX-3: 105 cm)

Horizontal and vertical velocity components:

Model

Quantitative comparison with experiment (EX-3: 105 cm)

Relative humidity:

Implementation

Implementation overview

Computation:

- All parts of the algorithm are computed on a GPU
- Multi-GPU implementation based on MPI

Custom code in C++ developed using:

- Template Numerical Library: https://tnl-project.org/
- CUDA: https://docs.nvidia.com/cuda/
- Message Passing Interface: https://www.mpi-forum.org/

Domain decomposition for LBM

- Computation: subdomains are processed on different GPUs
- Each MPI rank (process) manages its own GPU and subdomain
- Communication: 9 of 27 distribution functions need to be copied between adjacent subdomains
- For simplicity: only 1D distribution (our current implementation)

Implemented optimizations

- Domain decomposition with overlapped computation and communication (implementation based on CUDA streams)
- Avoiding buffers in communication (specific ordering of data in multidimensional arrays is necessary)
- Direct GPU-GPU copies via "CUDA-aware" MPI
- Streaming with the A-A pattern reduced memory requirements
- Balancing decomposition of the lattice and mesh

Implementation

Balancing decomposition of the lattice and mesh

Uniform lattice decomposition: 1/8 of nodes in each subdomain

Implementation

Ack

Balancing decomposition of the lattice and mesh

Uniform lattice decomposition: 1/8 of nodes in each subdomain

Unstructured mesh decomposition: non-uniform counts of mesh cells 12% 14% 14% 14% 24% 19% 3% 0%

Implementation

Ack

Balancing decomposition of the lattice and mesh

Balanced lattice and mesh decomposition:

Approx. 1/8 of mesh cells and approx. 1/8 of lattice nodes per MPI rank.

Ack

Balancing decomposition of the lattice and mesh

Balanced lattice and mesh decomposition:

Approx. 1/8 of mesh cells and approx. 1/8 of lattice nodes per MPI rank.

Implementation

Ack

Balancing decomposition of the lattice and mesh

Balanced lattice and mesh decomposition:

Approx. 1/8 of mesh cells and approx. 1/8 of lattice nodes per MPI rank.

Sketch of the decomposition algorithm

Approx. 500 lines of C++ code:

- 1 Find the range $[x_1, x_2]$ where the lattice and mesh overlap
- ② Define function F(x) = [no. of mesh cells whose centroid is ≤ x] (evaluated on lattice coordinates x_i and interpolated for x ∈ ℝ)
- **3** Define objective function $f : \mathbb{R}^{N_{\text{ranks}}} \mapsto \mathbb{R}$, where $N_{\text{ranks}} = [\text{no. of MPI ranks}]$:
 - input variable $ec{w}$, where $w_i \in \mathbb{R}$ stands for the width of i-th subdomain
 - imbalance on subinterval [a, b] in the partitioning $= N_{\text{ranks}} \frac{F(b) F(a)}{F(x_2) F(x_1)} 1$
 - $f(\vec{w}) = [\ell^2 \text{ norm of mesh imbalances for partitioning } \vec{w}]$
- 0 Minimize f using the gradient descent method and the uniform partitioning as initial condition
- ${f 5}$ Round the solution from ${\Bbb R}$ to the lattice coordinates (from double to int)
- **(b)** Try to increment/decrement each component of the solution and check if it improves the partitioning (iterative post-optimization in integer precision)
- *O* Decompose the remaining parts of the lattice which do not overlap with the mesh

Implementation

Decomposition notes

- Amount of work optimized at the cost of increased communication
- Only 1D decomposition is currently implemented not scalable
- Tested with up to 16 GPUs (Nvidia A-100) on 2 nodes (RCI cluster on FEE CTU):
 - $16 \times 40 \text{ GiB} = 640 \text{ GiB}$ memory on the GPUs
 - Up to $3115 \times 800 \times 905 \approx 2.25 \times 10^9$ lattice nodes + approx. 48×10^6 mesh cells
 - Computational time: 52 hours (simulation of 100 s physical time)
- Not tested on more GPUs/nodes due to cluster limitations:
 - global allocation limit: only 20 GPUs per user job
 - only 2 nodes have usable inter-node GPU-GPU MPI communication

Performance results (RCI cluster on FEE CTU)

LBM-only performance (i.e., not coupled with MHFEM) - weak scaling

NVIDIA Tesla V100:

N_{nodes}	N_{GPUs}	GLUPS	Eff
1	1	2.5	1.00
1	4	10.4	1.05
2	8	19.3	0.97
4	16	39.4	0.99
8	32	50.1	0.63

LBM-MHFEM performance – strong scaling

Weak scaling study is not possible due to different time steps in the MHFEM part.

N_{nodes}	N_{GPUs}	GLUPS	Eff
1	1	4.8	1.00
1	2	9.8	1.02
1	4	?.?	
1		?.?	
N_{nodes}	N_{GPUs}	GLUPS	Eff
1	1	1.1	1.00
1	2	2.1	
1	4	4.1	0.93
-			

NVIDIA Tesla A100:

Performance results (RCI cluster on FEE CTU)

LBM-only performance (i.e., not coupled with MHFEM) - weak scaling

NVIDIA Tesla V100:

NVIDIA Tesla A100:

N_{nodes}	N_{GPUs}	GLUPS	Eff
1	1	2.5	1.00
1	4	10.4	1.05
2	8	19.3	0.97
4	16	39.4	0.99
8	32	50.1	0.63

LBM-MHFEM performance – strong scaling

Weak scaling study is not possible due to different time steps in the MHFEM part.

N_{nodes}	N_{GPUs}	GLUPS	Eff
1	1	4.8	1.00
1	2	9.8	1.02
1	4	?.?	
1	8	?.?	
N_{nodes}	N_{GPUs}	GLUPS	Eff
1	1	1.1	1.00
1	2	2.1	
1	4	4.1	0.93
1		75	

Performance results (RCI cluster on FEE CTU)

LBM-only performance (i.e., not coupled with MHFEM) - weak scaling

NVIDIA Tesla V100:

NVIDIA Tesla A100:

N_{nodes}	N_{GPUs}	GLUPS	Eff
1	1	2.5	1.00
1	4	10.4	1.05
2	8	19.3	0.97
4	16	39.4	0.99
8	32	50.1	0.63

LBM-MHFEM performance – strong scaling

Weak scaling study is not possible due to different time steps in the MHFEM part.

N_{nodes}	N_{GPUs}	GLUPS	Eff
1	1	4.8	1.00
1	2	9.8	1.02
1	4	?.?	
1	8	?.?	
N_{nodes}	N_{GPUs}	GLUPS	Eff
$\frac{N_{nodes}}{1}$	N_{GPUs} 1	GLUPS	<i>Eff</i> 1.00
$rac{N_{nodes}}{1}$	N _{GPUs} 1 2	GLUPS 1.1 2.1	<i>Eff</i> 1.00 0.96
$\frac{N_{nodes}}{1}\\1\\1$	N _{GPUs} 1 2 4	GLUPS 1.1 2.1 4.1	<i>Eff</i> 1.00 0.96 0.93

Conclusion

- Validated model for vapor transport in air based on LBM and MHFEM
- Fully multi-GPU solver with good scalability on small number of GPUs

Future work:

- Development of the model (thermodynamics, coupling with porous media, etc.)
- Optimizations for scalability on more GPUs (e.g. multidimensional decomposition)

LBM-MHFEM

Validation results

Ack

Thank you for your attention!

Acknowledgements:

- Czech Science Foundation (project 21-09093S)
- Ministry of Education, Youth, and Sports of the Czech Republic (Inter-Excellence grant LTAUSA19021, OP RDE grant CZ.02.1.01/0.0/0.0/16_019/0000765)
- Grant Agency of the Czech Technical University in Prague (project SGS20/184/OHK4/3T/14)

Related papers:

- J. Klinkovský, A. C. Trautz, R. Fučík, T. H. Illangasekare: Lattice Boltzmann Method–Based Efficient GPU Simulator for Vapor Transport in the Boundary Layer Over a Moist Soil: Development and Experimental Validation, in preparation
- R. Fučík, J. Klinkovský, J. Solovský, T. Oberhuber, J. Mikyška: Multidimensional mixed-hybrid finite element method for compositional two-phase flow in heterogeneous porous media and its parallel implementation on GPU, Computer Physics Communications, 2019